

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Fabric

About

Fabric is a Python library and command-line tool for streamlining the use of
SSH for application deployment or systems administration tasks.

It provides a basic suite of operations for executing local or remote shell
commands (normally or via sudo) and uploading/downloading files, as well as
auxiliary functionality such as prompting the running user for input, or
aborting execution.

Typical use involves creating a Python module containing one or more functions,
then executing them via the fab command-line tool. Below is a small but
complete “fabfile” containing a single task:

from fabric.api import run

def host_type():
 run('uname -s')

Once a task is defined, it may be run on one or more servers, like so:

$ fab -H localhost,linuxbox host_type
[localhost] run: uname -s
[localhost] out: Darwin
[linuxbox] run: uname -s
[linuxbox] out: Linux

Done.
Disconnecting from localhost... done.
Disconnecting from linuxbox... done.

In addition to use via the fab tool, Fabric’s components may be imported
into other Python code, providing a Pythonic interface to the SSH protocol
suite at a higher level than that provided by e.g. Paramiko (which
Fabric itself leverages.)

Installation

Stable releases of Fabric are best installed via easy_install or pip;
or you may download TGZ or ZIP source archives from a couple of official
locations. Detailed instructions and links may be found on the
Installation page.

We recommend using the latest stable version of Fabric; releases are made often
to prevent any large gaps in functionality between the latest stable release
and the development version.

However, if you want to live on the edge, you can pull down the latest source
code from our Git repository, or fork us on Github. The Installation
page has details for how to access the source code.

Development

Any hackers interested in improving Fabric (or even users interested in how
Fabric is put together or released) please see the Development page. It
contains comprehensive info on contributing, repository layout, our release
strategy, and more.

Documentation

Please note that all documentation is currently written with Python 2.5 users
in mind, but with an eye for eventual Python 3.x compatibility. This leads to
the following patterns that may throw off readers used to Python 2.4 or who
have already upgraded to Python 2.6:

	from __future__ import with_statement: a “future import” required to
use the with statement in Python 2.5 – a feature you’ll be using
frequently. Python 2.6 users don’t need to do this.

	<true_value> if <expression> else <false_value>: Python’s relatively new
ternary statement, available in 2.5 and newer. Python 2.4 and older used to
fake this with <expression> and <true_value> or <false_value> (which
isn’t quite the same thing and has some logical loopholes.)

	print(<expression>) instead of print <expression>: We use the
print statement’s optional parentheses where possible, in order to be
more compatible with Python 3.x (in which print becomes a function.)

Tutorial

For new users, and/or for an overview of Fabric’s basic functionality, please
see the Overview and Tutorial. The rest of the documentation will assume you’re
at least passingly familiar with the material contained within.

Usage documentation

The following list contains all major sections of Fabric’s prose (non-API)
documentation, which expands upon the concepts outlined in the
Overview and Tutorial and also covers advanced topics.

	The environment dictionary, env

	Execution model

	fab options and arguments

	Fabfile construction and use

	Library Use

	Managing output

	SSH behavior

FAQ

Some frequently encountered questions, coupled with answers/solutions/excuses,
may be found on the Frequently Asked Questions (FAQ) page.

API documentation

Fabric maintains two sets of API documentation, autogenerated from the source
code’s docstrings (which are typically very thorough.)

Core API

The core API is loosely defined as those functions, classes and methods
which form the basic building blocks of Fabric (such as
run and sudo) upon which everything
else (the below “contrib” section, and user fabfiles) builds.

	Color output functions

	Context Managers

	Decorators

	Network

	Operations

	Utils

Contrib API

Fabric’s contrib package contains commonly useful tools (often merged in
from user fabfiles) for tasks such as user I/O, modifying remote files, and so
forth. While the core API is likely to remain small and relatively unchanged
over time, this contrib section will grow and evolve (while trying to remain
backwards-compatible) as more use-cases are solved and added.

	Console Output Utilities

	Django Integration

	File and Directory Management

	Project Tools

Changes from previous versions

	Changes in version 0.9

	Changes in version 0.9.1

	Changes in version 0.9.2

	Changes in version 0.9.3

	Changes in version 0.9.4

	Changes in version 0.9.5

Getting help

If you’ve scoured the prose and API
documentation and still can’t find an answer to your question, below are
various support resources that should help. We do request that you do at least
skim the documentation before posting tickets or mailing list questions,
however!

Mailing list

The best way to get help with using Fabric is via the fab-user mailing list [http://lists.nongnu.org/mailman/listinfo/fab-user] (currently hosted at
nongnu.org.) The Fabric developers do their best to reply promptly, and the
list contains an active community of other Fabric users and contributors as
well.

Twitter

Fabric has an official Twitter account, @pyfabric [http://twitter.com/pyfabric], which is used for announcements and occasional
related news tidbits (e.g. “Hey, check out this neat article on Fabric!”).

Bugs/ticket tracker

To file new bugs or search existing ones, you may visit Fabric’s Redmine [http://redmine.org] instance, located at code.fabfile.org [http://code.fabfile.org]. Due to issues with spam, you’ll need to (quickly
and painlessly) register an account in order to post new tickets.

IRC

We maintain a semi-official IRC channel at #fabric on Freenode
(irc://irc.freenode.net) where the developers and other users may be found.
As always with IRC, we can’t promise immediate responses, but some folks keep
logs of the channel and will try to get back to you when they can.

Wiki

There is an official Fabric MoinMoin [http://moinmo.in] wiki reachable at
wiki.fabfile.org [http://wiki.fabfile.org], although as of this writing its
usage patterns are still being worked out. Like the ticket tracker, spam has
forced us to put anti-spam measures up: the wiki has a simple, easy captcha in
place on the edit form.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Overview and Tutorial

Welcome to Fabric!

This document is a whirlwind tour of Fabric’s features and a quick guide to its
use. Additional documentation (which is linked to throughout) can be found in
the usage documentation – please make sure to check it out.

What is Fabric?

As the README says:

Fabric is a Python library and command-line tool for streamlining the use of
SSH for application deployment or systems administration tasks.

More specifically, Fabric is:

	A tool that lets you execute arbitrary Python functions via the command
line;

	A library of subroutines (built on top of a lower-level library) to make
executing shell commands over SSH easy and Pythonic.

Naturally, most users combine these two things, using Fabric to write and
execute Python functions, or tasks, to automate interactions with remote
servers. Let’s take a look.

Hello, fab

This wouldn’t be a proper tutorial without “the usual”:

def hello():
 print("Hello world!")

Placed in a Python module file named fabfile.py, that function can be
executed with the fab tool (installed as part of Fabric) and does just what
you’d expect:

$ fab hello
Hello world!

Done.

That’s all there is to it. This functionality allows Fabric to be used as a
(very) basic build tool even without importing any of its API.

Note

The fab tool simply imports your fabfile and executes the function or
functions you instruct it to. There’s nothing magic about it – anything
you can do in a normal Python script can be done in a fabfile!

See also

Execution strategy, Defining tasks, fab options and arguments

Local commands

As used above, fab only really saves a couple lines of
if __name__ == "__main__" boilerplate. It’s mostly designed for use with
Fabric’s API, which contains functions (or operations) for executing shell
commands, transferring files, and so forth.

Let’s build a hypothetical Web application fabfile. Fabfiles usually work best
at the root of a project:

.
|-- __init__.py
|-- app.wsgi
|-- fabfile.py <-- our fabfile!
|-- manage.py
`-- my_app
 |-- __init__.py
 |-- models.py
 |-- templates
 | `-- index.html
 |-- tests.py
 |-- urls.py
 `-- views.py

Note

We’re using a Django application here, but only as an example – Fabric is
not tied to any external codebase, save for its SSH library.

For starters, perhaps we want to run our tests and then pack up a copy of our
app so we’re ready for a deploy:

from fabric.api import local

def prepare_deploy():
 local('./manage.py test my_app', capture=False)
 local('tar czf /tmp/my_project.tgz .', capture=False)

The output of which might look a bit like this:

$ fab prepare_deploy
[localhost] run: ./manage.py test my_app
Creating test database...
Creating tables
Creating indexes
..
--
Ran 42 tests in 9.138s

OK
Destroying test database...

[localhost] run: tar czf /tmp/my_project.tgz .

Done.

The code itself is straightforward: import a Fabric API function,
local, and use it to run local shell commands. The rest of
Fabric’s API is similar – it’s all just Python.

See also

Operations, Fabfile discovery

Organize it your way

Because Fabric is “just Python” you’re free to organize your fabfile any way
you want. For example, it’s often useful to start splitting things up into
subtasks:

from fabric.api import local

def test():
 local('./manage.py test my_app', capture=False)

def pack():
 local('tar czf /tmp/my_project.tgz .', capture=False)

def prepare_deploy():
 test()
 pack()

The prepare_deploy task can be called just as before, but now you can make
a more granular call to one of the sub-tasks, if desired.

Failure

Our base case works fine now, but what happens if our tests fail? Chances are
we want to put on the brakes and fix them before deploying.

Fabric checks the return value of programs called via operations and will abort
if they didn’t exit cleanly. Let’s see what happens if one of our tests
encounters an error:

$ fab prepare_deploy
[localhost] run: ./manage.py test my_app
Creating test database...
Creating tables
Creating indexes
.............E............................
==
ERROR: testSomething (my_project.my_app.tests.MainTests)
--
Traceback (most recent call last):
[...]

--
Ran 42 tests in 9.138s

FAILED (errors=1)
Destroying test database...

Fatal error: local() encountered an error (return code 2) while executing './manage.py test my_app'

Aborting.

Great! We didn’t have to do anything ourselves: Fabric detected the failure and
aborted, never running the pack task.

See also

Failure handling (usage documentation)

Failure handling

But what if we wanted to be flexible and give the user a choice? A setting
(or environment variable, usually shortened to env var) called
warn_only lets you turn aborts into warnings, allowing flexible error
handling to occur.

Let’s flip this setting on for our test function, and then inspect the
result of the local call ourselves:

from __future__ import with_statement
from fabric.api import local, settings, abort
from fabric.contrib.console import confirm

def test():
 with settings(warn_only=True):
 result = local('./manage.py test my_app', capture=False)
 if result.failed and not confirm("Tests failed. Continue anyway?"):
 abort("Aborting at user request.")

[...]

In adding this new feature we’ve introduced a number of new things:

	The __future__ import required to use with: in Python 2.5;

	Fabric’s contrib.console submodule, containing the
confirm function, used for simple yes/no prompts;

	The settings context manager, used to apply
settings to a specific block of code;

	Command-running operations like local return objects
containing info about their result (such as .failed, or also
.return_code);

	And the abort function, used to manually abort execution.

However, despite the additional complexity, it’s still pretty easy to follow,
and is now much more flexible.

See also

Context Managers, Full list of env vars

Making connections

Let’s start wrapping up our fabfile by putting in the keystone: a deploy
task:

def deploy():
 put('/tmp/my_project.tgz', '/tmp/')
 with cd('/srv/django/my_project/'):
 run('tar xzf /tmp/my_project.tgz')
 run('touch app.wsgi')

Here again, we introduce a handful of new functions:

	put, which simply uploads a file to a remote server;

	cd, an easy way of prefixing commands with a
cd /to/some/directory call;

	run, which is similar to local but
runs remotely instead of locally.

And because at this point, we’re using a nontrivial number of Fabric’s API
functions, let’s switch our API import to use * (as mentioned in the
fabfile documentation):

from __future__ import with_statement
from fabric.api import *
from fabric.contrib.console import confirm

With these changes in place, let’s deploy:

$ fab deploy
No hosts found. Please specify (single) host string for connection: my_server
[my_server] put: /tmp/my_project.tgz -> /tmp/my_project.tgz
[my_server] run: touch app.wsgi

Done.

We never specified any connection info in our fabfile, so Fabric prompted us at
runtime. Connection definitions use SSH-like “host strings” (e.g.
user@host:port) and will use your local username as a default – so in this
example, we just had to specify the hostname, my_server.

See also

Importing Fabric

Defining connections beforehand

Specifying connection info at runtime gets old real fast, so Fabric provides a
handful of ways to do it in your fabfile or on the command line. We won’t cover
all of them here, but we will show you the most common one: setting the global
host list, env.hosts.

env is a global dictionary-like object driving many of
Fabric’s settings, and can be written to with attributes as well (in fact,
settings, seen above, is simply a wrapper for this.)
Thus, we can modify it at module level near the top of our fabfile like so:

from __future__ import with_statement
from fabric.api import *
from fabric.contrib.console import confirm

env.hosts = ['my_server']

def test():
 do_test_stuff()

When fab loads up our fabfile, our modification of env will execute,
storing our settings change. The end result is exactly as above: our deploy
task will run against the my_server server.

This is also how you can tell Fabric to run on multiple remote systems at once:
because env.hosts is a list, fab iterates over it, calling the given
task once for each connection.

See also

The environment dictionary, env, How host lists are constructed

Conclusion

Our completed fabfile is still pretty short, as such things go. Here it is in
its entirety:

from __future__ import with_statement
from fabric.api import *
from fabric.contrib.console import confirm

env.hosts = ['my_server']

def test():
 with settings(warn_only=True):
 result = local('./manage.py test my_app', capture=False)
 if result.failed and not confirm("Tests failed. Continue anyway?"):
 abort("Aborting at user request.")

def pack():
 local('tar czf /tmp/my_project.tgz .', capture=False)

def prepare_deploy():
 test()
 pack()

def deploy():
 put('/tmp/my_project.tgz', '/tmp/')
 with cd('/srv/django/my_project/'):
 run('tar xzf /tmp/my_project.tgz')
 run('touch app.wsgi')

This fabfile makes use of a large portion of Fabric’s feature set:

	defining fabfile tasks and running them with fab;

	calling local shell commands with local;

	modifying env vars with settings;

	handling command failures, prompting the user, and manually aborting;

	and defining host lists and run-ning remote commands.

However, there’s still a lot more we haven’t covered here! Please make sure you
follow the various “see also” links, and check out the documentation table of
contents on the main index page.

Thanks for reading!

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Installation

Fabric is best installed via pip [http://pip.openplans.org] (highly
recommended) or easy_install [http://wiki.python.org/moin/CheeseShopTutorial] (older, but still works
fine). You may also opt to use your operating system’s package manager (the
package is typically called fabric or python-fabric), or execute
python setup.py install inside a downloaded or
cloned copy of the source code.

Dependencies

In order for Fabric’s installation to succeed, you will need four primary pieces of software:

	the Python programming language;

	the setuptools packaging/installation library;

	the PyCrypto cryptography library;

	and the Paramiko SSH2 library.

Please read on for important details on each dependency – there are a few
gotchas.

Python

Fabric requires Python [http://python.org] version 2.5 or 2.6. Some caveats
and notes about other Python versions:

	We are not planning on supporting Python 2.4 given its age and the number
of useful tools in Python 2.5 such as context managers and new modules.
That said, the actual amount of 2.5-specific functionality is not
prohibitively large, and we would link to – but not support – a third-party
2.4-compatible fork. (No such fork exists at this time, to our knowledge.)

	Fabric has not yet been tested on Python 3.x and is thus likely to be
incompatible with that line of development. However, we try to be at least
somewhat forward-looking (e.g. using print() instead of print) and
will definitely be porting to 3.x in the future once our dependencies do.

setuptools

Setuptools [http://pypi.python.org/pypi/setuptools] comes with some Python installations by default; if yours doesn’t,
you’ll need to grab it. In such situations it’s typically packaged as
python-setuptools, py25-setuptools or similar. Fabric may drop its
setuptools dependency in the future, or include alternative support for the
Distribute [http://pypi.python.org/pypi/distribute] project, but for now setuptools is required for installation.

PyCrypto

PyCrypto [http://www.amk.ca/python/code/crypto.html] is a dependency of
Paramiko which provides the low-level (C-based) encryption algorithms used to
run SSH. There are a couple gotchas associated with installing PyCrypto: its
compatibility with Python’s package tools, and the fact that it is a C-based
extension.

Package tools

We strongly recommend using pip to install Fabric as it is newer and
generally better than easy_install. However, a combination of bugs in
specific versions of Python, pip and PyCrypto can prevent installation of
PyCrypto. Specifically:

	Python = 2.5.x

	PyCrypto >= 2.1

	pip < 0.8.1

When all three criteria are met, you may encounter No such file or
directory IOErrors when trying to pip install Fabric or pip install
PyCrypto.

The fix is simply to make sure at least one of the above criteria is not met,
by doing the following (in order of preference):

	Upgrade to pip 0.8.1 or above, e.g. by running pip install -U pip.

	Explicitly install PyCrypto 2.0.1 (which is the latest version known to work with
Fabric which does not cause the installation problem) via pip install
PyCrypto==2.0.1.

	Upgrade to Python 2.6 or above.

C extension

Unless you are installing from a precompiled source such as a Debian apt
repository or RedHat RPM, or using pypm, you will also need the
ability to build Python C-based modules from source in order to install
PyCrypto. Users on Unix-based platforms such as Ubuntu or Mac OS X will
need the traditional C build toolchain installed (e.g. Developer Tools / XCode
Tools on the Mac, or the build-essential package on Ubuntu or Debian Linux
– basically, anything with gcc, make and so forth) as well as the
Python development libraries, often named python-dev or similar.

For Windows users we recommend using pypm, installing a C
development environment such as Cygwin [http://cygwin.com] or obtaining a
precompiled Win32 PyCrypto package from voidspace’s Python modules page [http://www.voidspace.org.uk/python/modules.shtml#pycrypto].

Note

Some Windows users whose Python is 64-bit have found that the PyCrypto
dependency winrandom may not install properly, leading to ImportErrors.
In this scenario, you’ll probably need to compile winrandom yourself
via e.g. MS Visual Studio. See #194 [http://code.fabfile.org/issues/show/194] for info.

Development dependencies

If you are interested in doing development work on Fabric (or even just running
the test suite), you may also need to install some or all of the following
packages:

	git [http://git-scm.com] and Mercurial [http://mercurial.selenic.com/wiki/], in order to obtain some of the
other dependencies below;

	Nose [http://code.google.com/p/python-nose/]

	Coverage [http://nedbatchelder.com/code/modules/coverage.html]

	PyLint [http://www.logilab.org/857]

	Fudge [http://farmdev.com/projects/fudge/index.html]

	Sphinx [http://sphinx.pocoo.org/]

For an up-to-date list of exact testing/development requirements, including
version numbers, please see the requirements.txt file included with the
source distribution. This file is intended to be used with pip, e.g. pip
install -r requirements.txt.

Downloads

To obtain a tar.gz or zip archive of the Fabric source code, you may visit
either of the following locations:

	The official downloads are located in Fabric’s Redmine instance at
http://code.fabfile.org/projects/fabric/files/. This is the spot you want
to download from for operating system packages, as the only changing part of
the URL will be the filename itself and the md5 hashes will be consistent.

	Our Git repository viewer [http://git.fabfile.org] provides downloads of
all tagged releases. See the “Download” column, next to the “Tag” column in
the middle of the front page. Please note that due to how cgit generates tag
archives, the md5 sums will change over time, so use of this location for
package downloads is not recommended.

	Our GitHub mirror [http://github.com/bitprophet/fabric] also has downloads
of all tagged releases – just click the ‘Download’ button near the top of
the main page.

	Fabric’s PyPI page [http://pypi.python.org/pypi/Fabric] offers manual
downloads in addition to being the entry point for easy_install/pip.

Source code checkouts

The Fabric developers manage the project’s source code with the Git [http://git-scm.com] DVCS. To follow Fabric’s development via Git instead of
downloading official releases, you have the following options:

	Clone the canonical Git repository, git://fabfile.org/fabric.git (note
that a Web view of this repository can be found at git.fabfile.org [http://git.fabfile.org])

	Clone the official Github mirror/collaboration repository,
git://github.com/bitprophet/fabric.git

	Make your own fork of the Github repository by making a Github account,
visiting GitHub/bitprophet/fabric [http://github.com/bitprophet/fabric]
and clicking the “fork” button.

Note

If you’ve obtained the Fabric source via source control and plan on
updating your checkout in the future, we highly suggest using python
setup.py develop instead – it will use symbolic links instead of file
copies, ensuring that imports of the library or use of the command-line
tool will always refer to your checkout.

For information on the hows and whys of Fabric development, including which
branches may be of interest and how you can help out, please see the
Development page.

ActivePython and PyPM

Windows users who already have ActiveState’s ActivePython [http://www.activestate.com/activepython/downloads] distribution installed may
find Fabric is best installed with its (binary) package manager, PyPM [http://code.activestate.com/pypm/]. Below is example output from an
installation of Fabric 0.9.4 via pypm:

C:\> pypm install fabric
The following packages will be installed into "%APPDATA%\Python" (2.7):
 paramiko-1.7.6 pycrypto-2.0.1 fabric-0.9.4
Get: [pypm-free.activestate.com] fabric 0.9.4
Get: [pypm-free.activestate.com] paramiko 1.7.6
Get: [pypm-free.activestate.com] pycrypto 2.0.1
Installing paramiko-1.7.6
Installing pycrypto-2.0.1
Installing fabric-0.9.4
Fixing script %APPDATA%\Python\Scripts\fab-script.py
C:\>

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Development

The Fabric development team consists of two programmers, Jeff Forcier [http://bitprophet.org] and Christian Vest Hansen [http://my.opera.com/karmazilla/blog/], with Jeff taking the lead role.
However, dozens of other developers pitch in by submitting patches and ideas,
via individual emails, Redmine [http://code.fabfile.org], the mailing list [http://lists.nongnu.org/mailman/listinfo/fab-user] and GitHub [http://github.com/bitprophet/fabric].

Get the code

Please see the Source code checkouts section of the Installation
page for details on how to obtain Fabric’s source code.

Contributing

There are a number of ways to get involved with Fabric:

	Use Fabric and send us feedback! This is both the easiest and arguably
the most important way to improve the project – let us know how you
currently use Fabric and how you want to use it. (Please do try to search the
ticket tracker [http://code.fabfile.org] first, though, when submitting
feature ideas.)

	Report bugs. Pretty much a special case of the previous item: if you
think you’ve found a bug in Fabric, check on the Redmine ticket tracker [http://code.fabfile.org] to see if anyone’s reported it yet, and if not –
file a bug! If possible, try to make sure you can replicate it repeatedly,
and let us know the circumstances (what version of Fabric you’re using, what
platform you’re on, and what exactly you were doing when the bug cropped up.)

	Submit patches or new features. See the Source code checkouts
documentation, grab a Git clone of the source, and either email a patch to
the mailing list or make your own GitHub fork and post a link to your fork
(or a specific commit on a fork) in the appropriate Redmine ticket.
While we may not always reply promptly, we do try to make time eventually to
inspect all contributions and either incorporate them or explain why we don’t
feel the change is a good fit.

Communication

If a ticket-tracker ticket exists for a given issue, please keep all
communication in that ticket’s comments – for example, when submitting patches
via Github, it’s easier for us if you leave a note in the ticket instead of
sending a Github pull request.

The core devs receive emails for just about any ticket-tracker activity, so
additional notices via Github or other means only serve to slow things down.

Style

Fabric tries hard to honor PEP-8 [http://www.python.org/dev/peps/pep-0008/], especially (but not limited to!) the
following:

	Keep all lines under 80 characters. This goes for the ReST documentation as
well as code itself.
	Exceptions are made for situations where breaking a long string (such as a
string being print-ed from source code, or an especially long URL link
in documentation) would be kind of a pain.

	Typical Python 4-space (soft-tab) indents. No tabs! No 8 space indents! (No
2- or 3-space indents, for that matter!)

	CamelCase class names, but lowercase_underscore_separated everything
else.

Branching/Repository Layout

While Fabric’s development methodology isn’t set in stone yet, the following
items detail how we currently organize the Git repository and expect to perform
merges and so forth. This will be chiefly of interest to those who wish to
follow a specific Git branch instead of released versions, or to any
contributors.

	We use a combined ‘release and feature branches’ methodology, where every
minor release (e.g. 0.9, 1.0, 1.1, 1.2 etc; see Releases below for
details on versioning) gets a release branch for bugfixes, and big feature
development is performed in a central master branch and/or in
feature-specific feature branches (e.g. a branch for reworking the internals
to be threadsafe, or one for overhauling task dependencies, etc.)
	At time of writing, this means that Fabric maintains an 0.9 release
branch, from which all prerelease and final release versions of 0.9.x, e.g.
0.9rc1 and 0.9.0 and so forth, are cut.

	New features intended for the next major release (Fabric 1.0) will be kept
in the master branch. Once the 1.0 alpha or beta period begins, this
work will be split off into a 1.0 branch and master will start
forming Fabric 1.1.

	While we try our best not to commit broken code or change APIs without
warning, as with many other open-source projects we can only have a
guarantee of stability in the release branches. Only follow master if
you’re willing to deal with a little pain.

	Conversely, because we try to keep release branches relatively stable, you
may find it easier to use Fabric from a source checkout of a release branch
instead of upgrading to new released versions. This can provide a decent
middle ground between stability and the ability to get bugfixes or
backported features easily.

	The core developers will take care of performing merging/branching on the
official repositories. Since Git is Git, contributors may of course do
whatever they wish in their own clones/forks.

	Bugfixes are to be performed on release branches and then merged into
master so that master is always up-to-date (or nearly so; while it’s
not mandatory to merge after every bugfix, doing so at least daily is a good
idea.)

	Feature branches, if used, should periodically merge in changes from
master so that when it comes time for them to merge back into master
things aren’t quite as painful.

Releases

Fabric tries to follow open-source standards and conventions in its release
tagging, including typical version numbers such as 2.0, 1.2.5, or
1.2b1. Each release will be marked as a tag in the Git repositories, and
are broken down as follows:

Major

Major releases update the first number, e.g. going from 0.9 to 1.0, and
indicate that the software has reached some very large milestone.

For example, the upcoming 1.0 will mean that we feel Fabric has reached its
primary design goals of a solid core API and well-defined area for additional
functionality to live. Version 2.0 might, for example, indicate a rewrite using
a new underlying network technology (though this isn’t necessarily planned.)

Major releases will often be backwards-incompatible with the previous line of
development, though this is not a requirement, just a usual happenstance.
Users should expect to have to make at least some changes to their fabfiles
when switching between major versions.

Minor

Minor releases, such as moving from 1.0 to 1.1, typically mean that a new,
large feature has been added. They are also sometimes used to mark off the
fact that a lot of bug fixes or small feature modifications have occurred
since the previous minor release. (And, naturally, some of them will involve
both at the same time.)

These releases are guaranteed to be backwards-compatible with all other
releases containing the same major version number, so a fabfile that works
with 1.0 should also work fine with 1.1 or even 1.9.

Note

This policy marks a departure from early versions of Fabric, wherein the
minor release number was the backwards-compatibility boundary – e.g.
Fabric 0.1 was incompatible with Fabric 0.0.x.

Fabric 0.1 to 0.9 also marked a rewrite of the software and a change of
hands, and so did break backwards compatibility. This will not happen
again.

Bugfix/tertiary

The third and final part of version numbers, such as the ‘3’ in 1.0.3,
generally indicate a release containing one or more bugfixes, although minor
feature additions or modifications may sometimes occur.

This third number is sometimes omitted for the first major or minor release in
a series, e.g. 1.2 or 2.0, and in these cases it can be considered an implicit
zero (e.g. 2.0.0).

Note

The 0.9.x branch of development will see more significant feature additions
than is planned for future lines. This is in order to backport some useful
features from the 1.0 branch so that the feature gap between 0.9 and 1.0 is
not as large as it was when 0.9.0 was released.

In 1.0.x and so forth, tertiary releases are more likely to contain just
bugfixes or tweaks, and not new functionality, as the window between minor
releases is expected to be shorter than that of 0.1 => 0.9.

Support of older releases

Major and minor releases do not mark the end of the previous line or lines of
development:

	The two most recent stable release branches will continue to receive critical
bugfixes. For example, once 1.0 is released, both it and 0.9 will likely see
tertiary releases until 1.1 is released, at which point only 1.1 and 1.0 will
get bugfixes.

	Depending on the nature of bugs found and the difficulty in backporting them,
older release lines may also continue to get bugfixes – but there’s no
longer a guarantee of any kind. Thus, if a bug is found in 1.1 that affects
0.9 and can be easily applied, we may cut a new 0.9.x release.

	This policy may change in the future to accomodate more branches, depending
on development speed.

We hope that this policy will allow us to have a rapid minor release cycle (and
thus keep new features coming out frequently) without causing users to feel too
much pressure to upgrade right away. At the same time, the backwards
compatibility guarantee means that users should still feel comfortable
upgrading to the next minor release in order to stay within this sliding
support window.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Frequently Asked Questions (FAQ)

These are some of the most commonly encountered problems or frequently asked
questions which we receive from users. They aren’t intended as a substitute for
reading the rest of the documentation, especially the usage docs, so please make sure you check those out if your question is not
answered here.

My (cd/workon/export/etc) calls don’t seem to work!

While Fabric can be used for many shell-script-like tasks, there’s a slightly
unintuitive catch: each run or sudo
call has its own distinct shell session. This is required in order for Fabric
to reliably figure out, after your command has run, what its standard out/error
and return codes were.

Unfortunately, it means that code like the following doesn’t behave as you
might assume:

def deploy():
 run("cd /path/to/application")
 run("./update.sh")

If that were a shell script, the second run call would
have executed with a current working directory of /path/to/application/ –
but because both commands are run in their own distinct session over SSH, it
actually tries to execute $HOME/update.sh instead (since your remote home
directory is the default working directory).

A simple workaround is to make use of shell logic operations such as &&,
which link multiple expressions together (provided the left hand side executed
without error) like so:

def deploy():
 run("cd /path/to/application && ./update.sh")

Fabric provides a convenient shortcut for this specific use case, in fact:
cd.

Note

You might also get away with an absolute path and skip directory changing
altogether:

def deploy():
 run("/path/to/application/update.sh")

However, this requires that the command in question makes no assumptions
about your current working directory!

Why do I sometimes see err: stdin: is not a tty?

This message is typically generated by programs such as biff or mesg
lurking within your remote user’s .profile or .bashrc files (or any
other such files, including system-wide ones.) Fabric’s default mode of
operation involves executing the Bash shell in “login mode”, which causes these
files to be executed.

Because Fabric also doesn’t bother asking the remote end for a tty by default
(as it’s not usually necessary) programs fired within your startup files, which
expect a tty to be present, will complain – and thus, stderr output about
“stdin is not a tty” or similar.

There are multiple ways to deal with this problem:

	Find and remove or comment out the offending program call. If the program was
not added by you on purpose and is simply a legacy of the operating system,
this may be safe to do, and is the simplest approach.

	Override env.shell to remove the -l flag. This should tell Bash not
to load your startup files. If you don’t depend on the contents of your
startup files (such as aliases or whatnot) this may be a good solution.

	Pass pty=True to run or sudo, which will force allocation of a
pseudo-tty on the remote end, and hopefully cause the offending program to be
less cranky.

Why can’t I run programs in the background with &? It makes Fabric hang.

Because Fabric executes a shell on the remote end for each invocation of
run or sudo (see also), backgrounding a
process via the shell will not work as expected. Backgrounded processes may
still prevent the calling shell from exiting until they stop running, and this
in turn prevents Fabric from continuing on with its own execution.

The key to fixing this is to ensure that your process’ standard pipes are all
disassociated from the calling shell, which may be done in a number of ways:

	Use a pre-existing daemonization technique if one exists for the program at
hand – for example, calling an init script instead of directly invoking a
server binary.

	Run the program under nohup and redirect stdin, stdout and stderr to
/dev/null (or to your file of choice, if you need the output later):

run("nohup yes >& /dev/null < /dev/null &")

(yes is simply an example of a program that may run for a long time or
forever; >&, < and & are Bash syntax for pipe redirection and
backgrounding, respectively – see your shell’s man page for details.)

	Use tmux, screen or dtach to fully detach the process from the
running shell; these tools have the benefit of allowing you to reattach to
the process later on if needed (among many other such benefits).

My remote system doesn’t have bash installed by default, do I need to install bash?

While Fabric is written with bash in mind, it’s not an absolute
requirement. Simply change env.shell to call your desired shell, and
include an argument similar to bash‘s -c argument, which allows us to
build shell commands of the form:

/bin/bash -l -c "<command string here>"

where /bin/bash -l -c is the default value of env.shell.

Note

The -l argument specifies a login shell and is not absolutely
required, merely convenient in many situations. Some shells lack the option
entirely and it may be safely omitted in such cases.

A relatively safe baseline is to call /bin/sh, which may call the original
sh binary, or (on some systems) csh, and give it the -c
argument, like so:

from fabric.api import env

env.shell = "/bin/sh -c"

This has been shown to work on FreeBSD and may work on other systems as well.

I’m sometimes incorrectly asked for a passphrase instead of a password.

Due to a bug of sorts in our SSH layer (Paramiko), it’s not currently possible
for Fabric to always accurately detect the type of authentication needed. We
have to try and guess whether we’re being asked for a private key passphrase or
a remote server password, and in some cases our guess ends up being wrong.

The most common such situation is where you, the local user, appear to have an
SSH keychain agent running, but the remote server is not able to honor your SSH
key, e.g. you haven’t yet transferred the public key over or are using an
incorrect username. In this situation, Fabric will prompt you with “Please
enter passphrase for private key”, but the text you enter is actually being
sent to the remote end’s password authentication.

We hope to address this in future releases, either by doing heavier
introspection of Paramiko or patching Paramiko itself.

Is Fabric thread-safe?

Currently, no, it’s not – the present version of Fabric relies heavily on
shared state in order to keep the codebase simple. However, there are definite
plans to update its internals so that Fabric may be either threaded or
otherwise parallelized so your tasks can run on multiple servers concurrently.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

The environment dictionary, env

A simple but integral aspect of Fabric is what is known as the “environment”: a
Python dictionary subclass which is used as a combination settings registry and
shared inter-task data namespace.

The environment dict is currently implemented as a global singleton,
fabric.state.env, and is included in fabric.api for convenience. Keys
in env are sometimes referred to as “env variables”.

Environment as configuration

Most of Fabric’s behavior is controllable by modifying env variables, such as
env.hosts (as seen in the tutorial). Other
commonly-modified env vars include:

	user: Fabric defaults to your local username when making SSH connections,
but you can use env.user to override this if necessary. The Execution model
documentation also has info on how to specify usernames on a per-host basis.

	password: Used to explicitly set your connection or sudo password if
desired. Fabric will prompt you when necessary if this isn’t set or doesn’t
appear to be valid.

	warn_only: a Boolean setting determining whether Fabric exits when
detecting errors on the remote end. See Execution model for more on this
behavior.

There are a number of other env variables; for the full list, see
Full list of env vars at the bottom of this document.

The settings context manager

In many situations, it’s useful to only temporarily modify env vars so that
a given settings change only applies to a block of code. Fabric provides a
settings context manager, which takes any numbr of
key/value pairs and will use them to modify env within its wrapped block.

For example, there are many situations where setting warn_only (see below)
is useful. To apply it to a few lines of code, use
settings(warn_only=True), as seen in this simplified version of the
contrib exists function:

from fabric.api import settings, run

def exists(path):
 with settings(warn_only=True):
 return run('test -e %s' % path)

See the Context Managers API documentation for details on
settings and other, similar tools.

Environment as shared state

As mentioned, the env object is simply a dictionary subclass, so your own
fabfile code may store information in it as well. This is sometimes useful for
keeping state between multiple tasks within a single execution run.

Note

This aspect of env is largely historical: in the past, fabfiles were
not pure Python and thus the environment was the only way to communicate
between tasks. Nowadays, you may call other tasks or subroutines directly,
and even keep module-level shared state if you wish.

In future versions, Fabric will become threadsafe, at which point env
may be the only easy/safe way to keep global state.

Other considerations

While it subclasses dict, Fabric’s env has been modified so that its
values may be read/written by way of attribute access, as seen in some of the
above material. In other words, env.host_string and env['host_string']
are functionally identical. We feel that attribute access can often save a bit
of typing and makes the code more readable, so it’s the recommended way to
interact with env.

The fact that it’s a dictionary can be useful in other ways, such as with
Python’s dict-based string interpolation, which is especially handy if you need
to insert multiple env vars into a single string. Using “normal” string
interpolation might look like this:

print("Executing on %s as %s" % (env.host, env.user))

Using dict-style interpolation is more readable and slightly shorter:

print("Executing on %(host)s as %(user)s" % env)

Full list of env vars

Below is a list of all predefined (or defined by Fabric itself during
execution) environment variables. While any of them may be manipulated
directly, it’s often best to use context_managers, either generally
via settings or via specific context managers such
as cd.

Note that many of these may be set via fab‘s command-line switches – see
fab options and arguments for details. Cross-links will be provided where appropriate.

all_hosts

Default: None

Set by fab to the full host list for the currently executing command. For
informational purposes only.

See also

Execution model

command

Default: None

Set by fab to the currently executing command name (e.g. when executed as
$ fab task1 task2, env.command will be set to "task1" while
task1 is executing, and then to "task2".) For informational purposes
only.

See also

Execution model

cwd

Default: ''

Current working directory. Used to keep state for the
cd context manager.

disable_known_hosts

Default: False

If True, the SSH layer will skip loading the user’s known-hosts file.
Useful for avoiding exceptions in situations where a “known host” changing its
host key is actually valid (e.g. cloud servers such as EC2.)

See also

SSH behavior

fabfile

Default: fabfile.py

Filename which fab searches for when loading fabfiles. Obviously, it
doesn’t make sense to set this in a fabfile, but it may be specified in a
.fabricrc file or on the command line.

See also

fab options and arguments

host_string

Default: None

Defines the current user/host/port which Fabric will connect to when executing
run, put and so forth. This is set by
fab when iterating over a previously set host list, and may also be
manually set when using Fabric as a library.

See also

Execution model

host

Default: None

Set to the hostname part of env.host_string by fab. For informational
purposes only.

hosts

Default: []

The global host list used when composing per-task host lists.

See also

Execution model

key_filename

Default: None

May be a string or list of strings, referencing file paths to SSH key files to
try when connecting. Passed through directly to the SSH layer. May be
set/appended to with -i.

See also

Paramiko’s documentation for SSHClient.connect() [http://www.lag.net/paramiko/docs/paramiko.SSHClient-class.html#connect]

local_user

A read-only value containing the local system username. This is the same value
as user‘s initial value, but whereas user may be altered by CLI
arguments, Python code or specific host strings, local_user will always
contain the same value.

no_agent

Default: False

If True, will tell Paramiko not to seek out running SSH agents when using
key-based authentication.

New in version 0.9.1.

no_keys

Default: False

If True, will tell Paramiko not to load any private key files from one’s
$HOME/.ssh/ folder. (Key files explicitly loaded via fab -i will still
be used, of course.)

New in version 0.9.1.

password

Default: None

The password used by the SSH layer when connecting to remote hosts, and/or
when answering sudo prompts.

When empty, the user will be prompted, with the result stored in this env
variable and used for connecting/sudoing. (In other words, setting this prior
to runtime is not required, though it may be convenient in some cases.)

Given a session where multiple different passwords are used, only the first one
will be stored into env.password. Put another way, the only time
env.password is written to by Fabric itself is when it is empty. This may
change in the future.

See also

Execution model

port

Default: None

Set to the port part of env.host_string by fab when iterating over a
host list. For informational purposes only.

real_fabfile

Default: None

Set by fab with the path to the fabfile it has loaded up, if it got that
far. For informational purposes only.

See also

fab options and arguments

rcfile

Default: $HOME/.fabricrc

Path used when loading Fabric’s local settings file.

See also

fab options and arguments

reject_unknown_hosts

Default: False

If True, the SSH layer will raise an exception when connecting to hosts not
listed in the user’s known-hosts file.

See also

SSH behavior

roledefs

Default: {}

Dictionary defining role name to host list mappings.

See also

Execution model

roles

Default: []

The global role list used when composing per-task host lists.

See also

Execution model

shell

Default: /bin/bash -l -c

Value used as shell wrapper when executing commands with e.g.
run. Must be able to exist in the form <env.shell>
"<command goes here>" – e.g. the default uses Bash’s -c option which
takes a command string as its value.

See also

Execution model

sudo_prompt

Default: sudo password:

Passed to the sudo program on remote systems so that Fabric may correctly
identify its password prompt. This may be modified by fabfiles but there’s no
real reason to.

See also

The sudo operation

use_shell

Default: True

Global setting which acts like the use_shell argument to
run/sudo: if it is set to False,
operations will not wrap executed commands in env.shell.

user

Default: User’s local username

The username used by the SSH layer when connecting to remote hosts. May be set
globally, and will be used when not otherwise explicitly set in host strings.
However, when explicitly given in such a manner, this variable will be
temporarily overwritten with the current value – i.e. it will always display
the user currently being connected as.

To illustrate this, a fabfile:

from fabric.api import env, run

env.user = 'implicit_user'
env.hosts = ['host1', 'explicit_user@host2', 'host3']

def print_user():
 with hide('running'):
 run('echo "%(user)s"' % env)

and its use:

$ fab print_user

[host1] out: implicit_user
[explicit_user@host2] out: explicit_user
[host3] out: implicit_user

Done.
Disconnecting from host1... done.
Disconnecting from host2... done.
Disconnecting from host3... done.

As you can see, during execution on host2, env.user was set to
"explicit_user", but was restored to its previous value
("implicit_user") afterwards.

Note

env.user is currently somewhat confusing (it’s used for configuration
and informational purposes) so expect this to change in the future –
the informational aspect will likely be broken out into a separate env
variable.

See also

Execution model

version

Default: current Fabric version string

Mostly for informational purposes. Modification is not recommended, but
probably won’t break anything either.

warn_only

Default: False

Specifies whether or not to warn, instead of abort, when
run/sudo/local
encounter error conditions.

See also

Execution model

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Execution model

If you’ve read the Overview and Tutorial, you should already be familiar with how
Fabric operates in the base case (a single task on a single host.) However, in
many situations you’ll find yourself wanting to execute multiple tasks and/or
on multiple hosts. Perhaps you want to split a big task into smaller reusable
parts, or crawl a collection of servers looking for an old user to remove. Such
a scenario requires specific rules for when and how tasks are executed.

This document explores Fabric’s execution model, including the main execution
loop, how to define host lists, how connections are made, and so forth.

Note

Most of this material applies to the fab tool only, as this
mode of use has historically been the main focus of Fabric’s development.
When writing version 0.9 we straightened out Fabric’s internals to make it
easier to use as a library, but there’s still work to be done before this
is as flexible and easy as we’d like it to be.

Execution strategy

Fabric currently provides a single, serial execution method, though more
options are planned for the future:

	A list of tasks is created. Currently this list is simply the arguments given
to fab, preserving the order given.

	For each task, a task-specific host list is generated from various
sources (see How host lists are constructed below for details.)

	The task list is walked through in order, and each task is run once per host
in its host list.

	Tasks with no hosts in their host list are considered local-only, and will
always run once and only once.

Thus, given the following fabfile:

from fabric.api import run, env

env.hosts = ['host1', 'host2']

def taskA():
 run('ls')

def taskB():
 run('whoami')

and the following invocation:

$ fab taskA taskB

you will see that Fabric performs the following:

	taskA executed on host1

	taskA executed on host2

	taskB executed on host1

	taskB executed on host2

While this approach is simplistic, it allows for a straightforward composition
of task functions, and (unlike tools which push the multi-host functionality
down to the individual function calls) enables shell script-like logic where
you may introspect the output or return code of a given command and decide what
to do next.

Defining tasks

When looking for tasks to execute, Fabric imports your fabfile and will
consider any callable object, except for the following:

	Callables whose name starts with an underscore (_). In other words,
Python’s usual “private” convention holds true here.

	Callables defined within Fabric itself. Fabric’s own functions such as
run and sudo will not show up in
your task list.

Note

To see exactly which callables in your fabfile may be executed via fab,
use fab --list.

Imports

Python’s import statement effectively includes the imported objects in your
module’s namespace. Since Fabric’s fabfiles are just Python modules, this means
that imports are also considered as possible tasks, alongside anything defined
in the fabfile itself.

Because of this, we strongly recommend that you use the import module form
of importing, followed by module.callable(), which will result in a cleaner
fabfile API than doing from module import callable.

For example, here’s a sample fabfile which uses urllib.urlopen to get some
data out of a webservice:

from urllib import urlopen

from fabric.api import run

def webservice_read():
 objects = urlopen('http://my/web/service/?foo=bar').read().split()
 print(objects)

This looks simple enough, and will run without error. However, look what
happens if we run fab --list on this fabfile:

$ fab --list
Available commands:

 webservice_read List some directories.
 urlopen urlopen(url [, data]) -> open file-like object

Our fabfile of only one task is showing two “tasks”, which is bad enough, and
an unsuspecting user might accidentally try to call fab urlopen, which
probably won’t work very well. Imagine any real-world fabfile, which is likely
to be much more complex, and hopefully you can see how this could get messy
fast.

For reference, here’s the recommended way to do it:

import urllib

from fabric.api import run

def webservice_read():
 objects = urllib.urlopen('http://my/web/service/?foo=bar').read().split()
 print(objects)

It’s a simple change, but it’ll make anyone using your fabfile a bit happier.

Defining host lists

Unless you’re using Fabric as a simple build system (which is possible, but not
the primary use-case) having tasks won’t do you any good without the ability to
specify remote hosts on which to execute them. There are a number of ways to do
so, with scopes varying from global to per-task, and it’s possible mix and
match as needed.

Hosts

Hosts, in this context, refer to what are also called “host strings”: Python
strings specifying a username, hostname and port combination, in the form of
username@hostname:port. User and/or port (and the associated @ or
:) may be omitted, and will be filled by the executing user’s local
username, and/or port 22, respectively. Thus, admin@foo.com:222,
deploy@website and nameserver1 could all be valid host strings.

Note

The user/hostname split occurs at the last @ found, so e.g. email
address usernames are valid and will be parsed correctly.

During execution, Fabric normalizes the host strings given and then stores each
part (username/hostname/port) in the environment dictionary, for both its use
and for tasks to reference if the need arises. See The environment dictionary, env for details.

Roles

Host strings map to single hosts, but sometimes it’s useful to arrange hosts in
groups. Perhaps you have a number of Web servers behind a load balancer and
want to update all of them, or want to run a task on “all client servers”.
Roles provide a way of defining strings which correspond to lists of host
strings, and can then be specified instead of writing out the entire list every
time.

This mapping is defined as a dictionary, env.roledefs, which must be
modified by a fabfile in order to be used. A simple example:

from fabric.api import env

env.roledefs['webservers'] = ['www1', 'www2', 'www3']

Since env.roledefs is naturally empty by default, you may also opt to
re-assign to it without fear of losing any information (provided you aren’t
loading other fabfiles which also modify it, of course):

from fabric.api import env

env.roledefs = {
 'web': ['www1', 'www2', 'www3'],
 'dns': ['ns1', 'ns2']
}

In addition to list/iterable object types, the values in env.roledefs may
be callables, and will thus be called when looked up when tasks are run instead
of at module load time. (For example, you could connect to remote servers
to obtain role definitions, and not worry about causing delays at fabfile load
time when calling e.g. fab --list.)

Use of roles is not required in any way – it’s simply a convenience in
situations where you have common groupings of servers.

Changed in version 0.9.2: Added ability to use callables as roledefs values.

How host lists are constructed

There are a number of ways to specify host lists, either globally or per-task,
and generally these methods override one another instead of merging together
(though this may change in future releases.) Each such method is typically
split into two parts, one for hosts and one for roles.

Globally, via env

The most common method of setting hosts or roles is by modifying two key-value
pairs in the environment dictionary, env: hosts and roles.
The value of these variables is checked at runtime, while constructing each
tasks’s host list.

Thus, they may be set at module level, which will take effect when the fabfile
is imported:

from fabric.api import env, run

env.hosts = ['host1', 'host2']

def mytask():
 run('ls /var/www')

Such a fabfile, run simply as fab mytask, will run mytask on host1
followed by host2.

Since the env vars are checked for each task, this means that if you have the
need, you can actually modify env in one task and it will affect all
following tasks:

from fabric.api import env, run

def set_hosts():
 env.hosts = ['host1', 'host2']

def mytask():
 run('ls /var/www')

When run as fab set_hosts mytask, set_hosts is a “local” task – its
own host list is empty – but mytask will again run on the two hosts given.

Note

This technique used to be a common way of creating fake “roles”, but is
less necessary now that roles are fully implemented. It may still be useful
in some situations, however.

Alongside env.hosts is env.roles (not to be confused with
env.roledefs!) which, if given, will be taken as a list of role names to
look up in env.roledefs.

Globally, via the command line

In addition to modifying env.hosts and env.roles at the module level,
you may define them by passing comma-separated string arguments to the
command-line switches --hosts/-H and --roles/-R,
e.g.:

$ fab -H host1,host2 mytask

Such an invocation is directly equivalent to env.hosts = ['host1', 'host2']
– the argument parser knows to look for these arguments and will modify
env at parse time.

Note

It’s possible, and in fact common, to use these switches to set only a
single host or role. Fabric simply calls string.split(',') on the given
string, so a string with no commas turns into a single-item list.

It is important to know that these command-line switches are interpreted
before your fabfile is loaded: any reassignment to env.hosts or
env.roles in your fabfile will overwrite them.

If you wish to nondestructively merge the command-line hosts with your
fabfile-defined ones, make sure your fabfile uses env.hosts.extend()
instead:

from fabric.api import env, run

env.hosts.extend(['host3', 'host4'])

def mytask():
 run('ls /var/www')

When this fabfile is run as fab -H host1,host2 mytask, env.hosts will
end contain ['host1', 'host2', 'host3', 'host4'] at the time that
mytask is executed.

Note

env.hosts is simply a Python list object – so you may use
env.hosts.append() or any other such method you wish.

Per-task, via the command line

Globally setting host lists only works if you want all your tasks to run on the
same host list all the time. This isn’t always true, so Fabric provides a few
ways to be more granular and specify host lists which apply to a single task
only. The first of these uses task arguments.

As outlined in fab options and arguments, it’s possible to specify per-task arguments via a
special command-line syntax. In addition to naming actual arguments to your
task function, this may be used to set the host, hosts, role or
roles “arguments”, which are interpreted by Fabric when building host lists
(and removed from the arguments passed to the task itself.)

Note

Since commas are already used to separate task arguments from one another,
semicolons must be used in the hosts or roles arguments to
delineate individual host strings or role names. Furthermore, the argument
must be quoted to prevent your shell from interpreting the semicolons.

Take the below fabfile, which is the same one we’ve been using, but which
doesn’t define any host info at all:

from fabric.api import run

def mytask():
 run('ls /var/www')

To specify per-task hosts for mytask, execute it like so:

$ fab mytask:hosts="host1;host2"

This will override any other host list and ensure mytask always runs on
just those two hosts.

Per-task, via decorators

If a given task should always run on a predetermined host list, you may wish to
specify this in your fabfile itself. This can be done by decorating a task
function with the hosts or roles
decorators. These decorators take a variable argument list, like so:

from fabric.api import hosts, run

@hosts('host1', 'host2')
def mytask():
 run('ls /var/www')

They will also take an single iterable argument, e.g.:

my_hosts = ('host1', 'host2')
@hosts(my_hosts)
def mytask():
 # ...

When used, these decorators override any checks of env for that particular
task’s host list (though env is not modified in any way – it is simply
ignored.) Thus, even if the above fabfile had defined env.hosts or the call
to fab uses --hosts/-H, mytask would still run
on a host list of ['host1', 'host2'].

However, decorator host lists do not override per-task command-line
arguments, as given in the previous section.

Order of precedence

We’ve been pointing out which methods of setting host lists trump the others,
as we’ve gone along. However, to make things clearer, here’s a quick breakdown:

	Per-task, command-line host lists (fab mytask:host=host1) override
absolutely everything else.

	Per-task, decorator-specified host lists (@hosts('host1')) override the
env variables.

	Globally specified host lists set in the fabfile (env.hosts = ['host1'])
can override such lists set on the command-line, but only if you’re not
careful (or want them to.)

	Globally specified host lists set on the command-line (--hosts=host1)
will initialize the env variables, but that’s it.

This logic may change slightly in the future to be more consistent (e.g.
having --hosts somehow take precedence over env.hosts in the
same way that command-line per-task lists trump in-code ones) but only in a
backwards-incompatible release.

Combining host lists

There is no “unionizing” of hosts between the various sources mentioned in
How host lists are constructed. If env.hosts is set to ['host1', 'host2', 'host3'],
and a per-function (e.g. via hosts) host list is set to
just ['host2', 'host3'], that function will not execute on host1,
because the per-task decorator host list takes precedence.

However, for each given source, if both roles and hosts are specified, they
will be merged together into a single host list. Take, for example, this
fabfile where both of the decorators are used:

from fabric.api import env, hosts, roles, run

env.roledefs = {'role1': ['b', 'c']}

@hosts('a', 'b')
@roles('role1')
def mytask():
 run('ls /var/www')

Assuming no command-line hosts or roles are given when mytask is executed,
this fabfile will call mytask on a host list of ['a', 'b', 'c'] – the
union of role1 and the contents of the hosts call.

Failure handling

Once the task list has been constructed, Fabric will start executing them as
outlined in Execution strategy, until all tasks have been run on the
entirety of their host lists. However, Fabric defaults to a “fail-fast”
behavior pattern: if anything goes wrong, such as a remote program returning a
nonzero return value or your fabfile’s Python code encountering an exception,
execution will halt immediately.

This is typically the desired behavior, but there are many exceptions to the
rule, so Fabric provides env.warn_only, a Boolean setting. It defaults to
False, meaning an error condition will result in the program aborting
immediately. However, if env.warn_only is set to True at the time of
failure – with, say, the settings context
manager – Fabric will emit a warning message but continue executing.

Connections

fab itself doesn’t actually make any connections to remote hosts. Instead,
it simply ensures that for each distinct run of a task on one of its hosts, the
env var env.host_string is set to the right value. Users wanting to
leverage Fabric as a library may do so manually to achieve similar effects.

env.host_string is (as the name implies) the “current” host string, and is
what Fabric uses to determine what connections to make (or re-use) when
network-aware functions are run. Operations like run or
put use env.host_string as a lookup key in a shared
dictionary which maps host strings to SSH connection objects.

Note

The connections dictionary (currently located at
fabric.state.connections) acts as a cache, opting to return previously
created connections if possible in order to save some overhead, and
creating new ones otherwise.

Lazy connections

Because connections are driven by the individual operations, Fabric will not
actually make connections until they’re necessary. Take for example this task
which does some local housekeeping prior to interacting with the remote
server:

from fabric.api import *

@hosts('host1')
def clean_and_upload():
 local('find assets/ -name "*.DS_Store" -exec rm '{}' \;')
 local('tar czf /tmp/assets.tgz assets/')
 put('/tmp/assets.tgz', '/tmp/assets.tgz')
 with cd('/var/www/myapp/'):
 run('tar xzf /tmp/assets.tgz')

What happens, connection-wise, is as follows:

	The two local calls will run without making any network
connections whatsoever;

	put asks the connection cache for a connection to
host1;

	The connection cache fails to find an existing connection for that host
string, and so creates a new SSH connection, returning it to
put;

	put uploads the file through that connection;

	Finally, the run call asks the cache for a connection
to that same host string, and is given the existing, cached connection for
its own use.

Extrapolating from this, you can also see that tasks which don’t use any
network-borne operations will never actually initiate any connections (though
they will still be run once for each host in their host list, if any.)

Closing connections

Fabric’s connection cache never closes connections itself – it leaves this up
to whatever is using it. The fab tool does this bookkeeping for
you: it iterates over all open connections and closes them just before it exits
(regardless of whether the tasks failed or not.)

Library users will need to ensure they explicitly close all open connections
before their program exits, though we plan to makes this easier in the future.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

fab options and arguments

The most common method for utilizing Fabric is via its command-line tool,
fab, which should have been placed on your shell’s executable path when
Fabric was installed. fab tries hard to be a good Unix citizen, using a
standard style of command-line switches, help output, and so forth.

Basic use

In its most simple form, fab may be called with no options at all, and
with one or more arguments, which should be task names, e.g.:

$ fab task1 task2

As detailed in Overview and Tutorial and Execution model, this will run task1
followed by task2, assuming that Fabric was able to find a fabfile nearby
containing Python functions with those names.

However, it’s possible to expand this simple usage into something more
flexible, by using the provided options and/or passing arguments to individual
tasks.

Arbitrary remote shell commands

New in version 0.9.2.

Fabric leverages a lesser-known command line convention and may be called in
the following manner:

$ fab [options] -- [shell command]

where everything after the -- is turned into a temporary
run call, and is not parsed for fab options. If you’ve
defined a host list at the module level or on the command line, this usage will
act like a one-line anonymous task.

For example, let’s say you just wanted to get the kernel info for a bunch of
systems; you could do this:

$ fab -H system1,system2,system3 -- uname -a

which would be literally equivalent to the following fabfile:

from fabric.api import run

def anonymous():
 run("uname -a")

as if it were executed thusly:

$ fab -H system1,system2,system3 anonymous

Most of the time you will want to just write out the task in your fabfile
(anything you use once, you’re likely to use again) but this feature provides a
handy, fast way to quickly dash off an SSH-borne command while leveraging your
fabfile’s connection settings.

Command-line options

A quick overview of all possible command line options can be found via fab
--help. If you’re looking for details on a specific option, we go into detail
below.

Note

fab uses Python’s optparse [http://docs.python.org/library/optparse.html] library, meaning that it honors typical
Linux or GNU style short and long options, as well as freely mixing options
and arguments. E.g. fab task1 -H hostname task2 -i path/to/keyfile is
just as valid as the more straightforward fab -H hostname -i
path/to/keyfile task1 task2.

	
-a

	Sets env.no_agent to True, forcing Paramiko not to
talk to the SSH agent when trying to unlock private key files.

New in version 0.9.1.

	
-c RCFILE, --config=RCFILE

	Sets env.rcfile to the given file path, which Fabric will
try to load on startup and use to update environment variables.

	
-d COMMAND, --display=COMMAND

	Prints the entire docstring for the given task, if there is one. Does not
currently print out the task’s function signature, so descriptive
docstrings are a good idea. (They’re always a good idea, of course –
just moreso here.)

	
-D, --disable-known-hosts

	Sets env.disable_known_hosts to True,
preventing Fabric from loading the user’s SSH known_hosts file.

	
-f FABFILE, --fabfile=FABFILE

	The fabfile name pattern to search for (defaults to fabfile.py), or
alternately an explicit file path to load as the fabfile (e.g.
/path/to/my/fabfile.py.)

See also

Fabfile construction and use

	
-h, --help

	Displays a standard help message, with all possible options and a brief
overview of what they do, then exits.

	
--hide=LEVELS

	A comma-separated list of output levels to hide by
default.

	
-H HOSTS, --hosts=HOSTS

	Sets env.hosts to the given comma-delimited list of host
strings.

	
-i KEY_FILENAME

	When set to a file path, will load the given file as an SSH identity file
(usually a private key.) This option may be repeated multiple times. Sets
(or appends to) env.key_filename.

	
-k

	Sets env.no_keys to True, forcing Paramiko to not look
for SSH private key files in one’s home directory.

New in version 0.9.1.

	
-l, --list

	Imports a fabfile as normal, but then prints a list of all discovered tasks
and exits. Will also print the first line of each task’s docstring, if it
has one, next to it (truncating if necessary.)

Changed in version 0.9.1: Added docstring to output.

See also

--shortlist

	
-p PASSWORD, --password=PASSWORD

	Sets env.password to the given string; it will then be
used as the default password when making SSH connections or calling the
sudo program.

	
-r, --reject-unknown-hosts

	Sets env.reject_unknown_hosts to True,
causing Fabric to abort when connecting to hosts not found in the user’s SSH
known_hosts file.

	
-R ROLES, --roles=ROLES

	Sets env.roles to the given comma-separated list of role
names.

	
-s SHELL, --shell=SHELL

	Sets env.shell to the given string, overriding the default
shell wrapper used to execute remote commands.

	
--shortlist

	Similar to --list, but without any embellishment, just task
names separated by newlines with no indentation or docstrings.

New in version 0.9.2.

See also

--list

	
--show=LEVELS

	A comma-separated list of output levels to show by
default.

See also

run, sudo

	
-u USER, --user=USER

	Sets env.user to the given string; it will then be used as the
default username when making SSH connections.

	
-V, --version

	Displays Fabric’s version number, then exits.

	
-w, --warn-only

	Sets env.warn_only to True, causing Fabric to
continue execution even when commands encounter error conditions.

Per-task arguments

The options given in Command-line options apply to the invocation of
fab as a whole; even if the order is mixed around, options still apply to
all given tasks equally. Additionally, since tasks are just Python functions,
it’s often desirable to pass in arguments to them at runtime.

Answering both these needs is the concept of “per-task arguments”, which is a
special syntax you can tack onto the end of any task name:

	Use a colon (:) to separate the task name from its arguments;

	Use commas (,) to separate arguments from one another (may be escaped
by using a backslash, i.e. \,);

	Use equals signs (=) for keyword arguments, or omit them for positional
arguments;

Additionally, since this process involves string parsing, all values will end
up as Python strings, so plan accordingly. (We hope to improve upon this in
future versions of Fabric, provided an intuitive syntax can be found.)

For example, a “create a new user” task might be defined like so (omitting most
of the actual logic for brevity):

def new_user(username, admin='no', comment="No comment provided"):
 log_action("New User (%s): %s" % (username, comment))
 pass

You can specify just the username:

$ fab new_user:myusername

Or treat it as an explicit keyword argument:

$ fab new_user:username=myusername

If both args are given, you can again give them as positional args:

$ fab new_user:myusername,yes

Or mix and match, just like in Python:

$ fab new_user:myusername,admin=yes

The log_action call above is useful for illustrating escaped commas, like
so:

$ fab new_user:myusername,admin=no,comment='Gary\, new developer (starts Monday)'

Note

Quoting the backslash-escaped comma is required, as not doing so will cause
shell syntax errors. Quotes are also needed whenever an argument involves
other shell-related characters such as spaces.

All of the above are translated into the expected Python function calls. For
example, the last call above would become:

>>> new_user('myusername', admin='yes', comment='Gary, new developer (starts Monday)')

Roles and hosts

As mentioned in the section on task execution,
there are a handful of per-task keyword arguments (host, hosts,
role and roles) which do not actually map to the task functions
themselves, but are used for setting per-task host and/or role lists.

These special kwargs are removed from the args/kwargs sent to the task
function itself; this is so that you don’t run into TypeErrors if your task
doesn’t define the kwargs in question. (It also means that if you do define
arguments with these names, you won’t be able to specify them in this manner –
a regrettable but necessary sacrifice.)

Note

If both the plural and singular forms of these kwargs are given, the value
of the plural will win out and the singular will be discarded.

When using the plural form of these arguments, one must use semicolons (;)
since commas are already being used to separate arguments from one another.
Furthermore, since your shell is likely to consider semicolons a special
character, you’ll want to quote the host list string to prevent shell
interpretation, e.g.:

$ fab new_user:myusername,hosts="host1;host2"

Again, since the hosts kwarg is removed from the argument list sent to the
new_user task function, the actual Python invocation would be
new_user('myusername'), and the function would be executed on a host list
of ['host1', 'host2'].

Settings files

Fabric currently honors a simple user settings file, or fabricrc (think
bashrc but for fab) which should contain one or more key-value pairs,
one per line. These lines will be subject to string.split('='), and thus
can currently only be used to specify string settings. Any such key-value pairs
will be used to update env when fab runs, and is loaded prior
to the loading of any fabfile.

By default, Fabric looks for ~/.fabricrc, and this may be overridden by
specifying the -c flag to fab.

For example, if your typical SSH login username differs from your workstation
username, and you don’t want to modify env.user in a project’s fabfile
(possibly because you expect others to use it as well) you could write a
fabricrc file like so:

user = ssh_user_name

Then, when running fab, your fabfile would load up with env.user set to
'ssh_user_name'. Other users of that fabfile could do the same, allowing
the fabfile itself to be cleanly agnostic regarding the default username.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Fabfile construction and use

This document contains miscellaneous sections about fabfiles, both how to best
write them, and how to use them once written.

Fabfile discovery

Fabric is capable of loading Python modules (e.g. fabfile.py) or packages
(e.g. a fabfile/ directory containing an __init__.py). By default, it
looks for something named either fabfile or fabfile.py.

The fabfile discovery algorithm searches in the invoking user’s current working
directory or any parent directories. Thus, it is oriented around “project” use,
where one keeps e.g. a fabfile.py at the root of a source code tree. Such a
fabfile will then be discovered no matter where in the tree the user invokes
fab.

The specific name to be searched for may be overridden on the command-line with
the -f option, or by adding a fabricrc line which
sets the value of fabfile. For example, if you wanted to name your fabfile
fab_tasks.py, you could create such a file and then call fab -f
fab_tasks.py <task name>, or add fabfile = fab_tasks.py to
~/.fabricrc.

If the given fabfile name contains path elements other than a filename (e.g.
../fabfile.py or /dir1/dir2/custom_fabfile) it will be treated as a
file path and directly checked for existence without any sort of searching.
When in this mode, tilde-expansion will be applied, so one may refer to e.g.
~/personal_fabfile.py.

Note

Fabric does a normal import (actually an __import__) of your
fabfile in order to access its contents – it does not do any eval-ing
or similar. In order for this to work, Fabric temporarily adds the found
fabfile’s containing folder to the Python load path (and removes it
immediately afterwards.)

Changed in version 0.9.2: The ability to load package fabfiles.

Importing Fabric

Because Fabric is just Python, you can import its components any way you
want. However, for the purposes of encapsulation and convenience (and to make
life easier for Fabric’s packaging script) Fabric’s public API is maintained in
the fabric.api module.

All of Fabric’s Operations,
Context Managers, Decorators and
Utils are included in this module as a single, flat
namespace. This enables a very simple and consistent interface to Fabric within
your fabfiles:

from fabric.api import *

call run(), sudo(), etc etc

This is not technically best practices (for a
number of reasons [http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html#importing]) and if you’re only using a couple of
Fab API calls, it is probably a good idea to explicitly from fabric.api
import env, run or similar. However, in most nontrivial fabfiles, you’ll be
using all or most of the API, and the star import:

from fabric.api import *

will be a lot easier to write and read than:

from fabric.api import abort, cd, env, get, hide, hosts, local, prompt, \
 put, require, roles, run, runs_once, settings, show, sudo, warn

so in this case we feel pragmatism overrides best practices.

Defining tasks and importing callables

For important information on what exactly Fabric will consider as a task when
it loads your fabfile, as well as notes on how best to import other code,
please see Defining tasks in the Execution model documentation.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Library Use

Fabric’s primary use case is via fabfiles and the fab tool,
and this is reflected in much of the documentation. However, Fabric’s internals
are written in such a manner as to be easily used without fab or fabfiles
at all – this document will show you how.

There’s really only a couple of considerations one must keep in mind, when
compared to writing a fabfile and using fab to run it: how connections are
really made, and how disconnections occur.

Connections

We’ve documented how Fabric really connects to its hosts before, but it’s
currently somewhat buried in the middle of the overall execution docs. Specifically, you’ll want to skip over to the
Connections section and read it real quick. (You should really give that
entire document a once-over, but it’s not absolutely required.)

As that section mentions, the key is simply that run,
sudo and the other operations only look in one place when
connecting: env.host_string. All of the other mechanisms
for setting hosts are interpreted by the fab tool when it runs, and don’t
matter when running as a library.

This is a good thing, insofar as it gives library users very granular control
over which commands are run on which hosts. However, at present, it also means
you may need to do a bit more heavy lifting compared to a regular fabfile: you
can’t rely on env.hosts or the host/role decorators, and instead
need to write your own for loops.

For example, this is how a fabfile could force a given subroutine (task) to run
on two hosts in a row:

@hosts('a', 'b')
def mytask():
 run('ls')

To get the same behavior in library usage, you’d need to do this:

def mytask():
 run('ls')

for host in ['a', 'b']:
 with settings(host_string=host):
 mytask()

In future revisions we’ll be adding more tools to make this a bit easier,
perhaps something like execute(task_object, host_list), but for now it’s up
to you.

Disconnecting

The other main thing that fab does for you is to disconnect from all hosts
at the end of a session; otherwise, Python will sit around forever waiting for
those network resources to be released.

Fabric 0.9.4 and newer have a function you can use to do this easily:
disconnect_all. Simply make sure your code calls this when it
terminates (typically in the finally clause of an outer try: finally
statement – lest errors in your code prevent disconnections from happening!)
and things ought to work pretty well.

If you’re on Fabric 0.9.3 or older, you can simply do this (disconnect_all
just adds a bit of nice output to this logic):

from fabric.state import connections

for key in connections.keys():
 connections[key].close()
 del connections[key]

Final note

This document is a first draft, and may not cover absolutely every difference
between fab use and library use. However, the above should highlight the
largest stumbling blocks. When in doubt, note that in the Fabric source code,
fabric/main.py contains the bulk of the extra work done by fab, and may
serve as a useful reference.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Managing output

The fab tool is very verbose by default and prints out almost everything it
can, including the remote end’s stderr and stdout streams, the command strings
being executed, and so forth. While this is necessary in many cases in order to
know just what’s going on, any nontrivial Fabric task will quickly become
difficult to follow as it runs.

Output levels

To aid in organizing task output, Fabric output is grouped into a number of
non-overlapping levels or groups, each of which may be turned on or off
independently. This provides flexible control over what is displayed to the
user.

Note

All levels, save for debug, are on by default.

Standard output levels

The standard, atomic output levels/groups are as follows:

	status: Status messages, i.e. noting when Fabric is done running, if
the user used a keyboard interrupt, or when servers are disconnected from.
These messages are almost always relevant and rarely verbose.

	aborts: Abort messages. Like status messages, these should really only be
turned off when using Fabric as a library, and possibly not even then. Note
that even if this output group is turned off, aborts will still occur –
there just won’t be any output about why Fabric aborted!

	warnings: Warning messages. These are often turned off when one expects a
given operation to fail, such as when using grep to test existence of
text in a file. If paired with setting env.warn_only to True, this
can result in fully silent warnings when remote programs fail. As with
aborts, this setting does not control actual warning behavior, only
whether warning messages are printed or hidden.

	running: Printouts of commands being executed or files transferred, e.g.
[myserver] run: ls /var/www. Also controls printing of tasks being run,
e.g. [myserver] Executing task 'foo'.

	stdout: Local, or remote, stdout, i.e. non-error output from commands.

	stderr: Local, or remote, stderr, i.e. error-related output from commands.

	user: User-generated output, i.e. local output printed by fabfile code
via use of the fastprint or puts functions.

Changed in version 0.9.2: Added “Executing task” lines to the running output level.

Changed in version 0.9.2: Added the user output level.

Debug output

There is a final atomic output level, debug, which behaves slightly
differently from the rest:

	debug: Turn on debugging (which is off by default.) Currently, this is
largely used to view the “full” commands being run; take for example this
run call:

run('ls "/home/username/Folder Name With Spaces/"')

Normally, the running line will show exactly what is passed into
run, like so:

[hostname] run: ls "/home/username/Folder Name With Spaces/"

With debug on, and assuming you’ve left shell set to True, you
will see the literal, full string as passed to the remote server:

[hostname] run: /bin/bash -l -c "ls \"/home/username/Folder Name With Spaces\""

Note

Where modifying other pieces of output (such as in the above example
where it modifies the ‘running’ line to show the shell and any escape
characters), this setting takes precedence over the others; so if
running is False but debug is True, you will still be shown the
‘running’ line in its debugging form.

Output level aliases

In addition to the atomic/standalone levels above, Fabric also provides a
couple of convenience aliases which map to multiple other levels. These may be
referenced anywhere the other levels are referenced, and will effectively
toggle all of the levels they are mapped to.

	output: Maps to both stdout and stderr. Useful for when you only
care to see the ‘running’ lines and your own print statements (and warnings).

	everything: Includes warnings, running, user and output
(see above.) Thus, when turning off everything, you will only see a bare
minimum of output (just status and debug if it’s on), along with your
own print statements.

Hiding and/or showing output levels

You may toggle any of Fabric’s output levels in a number of ways; for examples,
please see the API docs linked in each bullet point:

	Direct modification of fabric.state.output: fabric.state.output is a
dictionary subclass (similar to env) whose keys are the output
level names, and whose values are either True (show that particular type of
output) or False (hide it.)

fabric.state.output is the lowest-level implementation of output levels and
is what Fabric’s internals reference when deciding whether or not to print
their output.

	Context managers: hide and
show are twin context managers that take one or
more output level names as strings, and either hide or show them within the
wrapped block. As with Fabric’s other context managers, the prior values are
restored when the block exits.

See also

settings, which can nest calls to
hide and/or show
inside itself.

	Command-line arguments: You may use the --hide and/or
--show arguments to fab options and arguments, which behave exactly like the
context managers of the same names (but are, naturally, globally applied) and
take comma-separated strings as input.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

SSH behavior

Fabric currently makes use of the Paramiko [http://www.lag.net/paramiko/docs/] SSH library for managing all connections,
meaning that there are occasionally spots where it is limited by Paramiko’s
capabilities. Below are areas of note where Fabric will exhibit behavior that
isn’t consistent with, or as flexible as, the behavior of the ssh
command-line program.

Unknown hosts

SSH’s host key tracking mechanism keeps tabs on all the hosts you attempt to
connect to, and maintains a ~/.ssh/known_hosts file with mappings between
identifiers (IP address, sometimes with a hostname as well) and SSH keys. (For
details on how this works, please see the OpenSSH documentation [http://openssh.org/manual.html].)

Paramiko is capable of loading up your known_hosts file, and will then
compare any host it connects to, with that mapping. Settings are available to
determine what happens when an unknown host (a host whose username or IP is not
found in known_hosts) is seen:

	Reject: the host key is rejected and the connection is not made. This
results in a Python exception, which will terminate your Fabric session with a
message that the host is unknown.

	Add: the new host key is added to the in-memory list of known hosts, the
connection is made, and things continue normally. Note that this does not
modify your on-disk known_hosts file!

	Ask: not yet implemented at the Fabric level, this is a Paramiko option
which would result in the user being prompted about the unknown key and
whether to accept it.

Whether to reject or add hosts, as above, is controlled in Fabric via the
env.reject_unknown_hosts option, which is False
by default for convenience’s sake. We feel this is a valid tradeoff between
convenience and security; anyone who feels otherwise can easily modify their
fabfiles at module level to set env.reject_unknown_hosts = True.

Known hosts with changed keys

The point of SSH’s key/fingerprint tracking is so that man-in-the-middle
attacks can be detected: if an attacker redirects your SSH traffic to a
computer under his control, and pretends to be your original destination
server, the host keys will not match. Thus, the default behavior of SSH – and
Paramiko – is to immediately abort the connection when a host previously
recorded in known_hosts suddenly starts sending us a different host key.

In some edge cases such as some EC2 deployments, you may want to ignore this
potential problem. Paramiko, at the time of writing, doesn’t give us control
over this exact behavior, but we can sidestep it by simply skipping the loading
of known_hosts – if the host list being compared to is empty, then there’s
no problem. Set env.disable_known_hosts to True
when you want this behavior; it is False by default, in order to preserve
default SSH behavior.

Warning

Enabling env.disable_known_hosts will leave
you wide open to man-in-the-middle attacks! Please use with caution.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Color output functions

New in version 0.9.2.

Functions for wrapping strings in ANSI color codes.

Each function within this module returns the input string text, wrapped
with ANSI color codes for the appropriate color.

For example, to print some text as green on supporting terminals:

from fabric.colors import green

print(green("This text is green!"))

Because these functions simply return modified strings, you can nest them:

from fabric.colors import red, green

print(red("This sentence is red, except for " + green("these words, which are green") + "."))

If bold is set to True, the ANSI flag for bolding will be flipped on
for that particular invocation, which usually shows up as a bold or brighter
version of the original color on most terminals.

	
fabric.colors.blue(text, bold=False)

	

	
fabric.colors.cyan(text, bold=False)

	

	
fabric.colors.green(text, bold=False)

	

	
fabric.colors.magenta(text, bold=False)

	

	
fabric.colors.red(text, bold=False)

	

	
fabric.colors.white(text, bold=False)

	

	
fabric.colors.yellow(text, bold=False)

	

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Context Managers

Context managers for use with the with statement.

Note

When using Python 2.5, you will need to start your fabfile
with from __future__ import with_statement in order to make use of
the with statement (which is a regular, non __future__ feature of
Python 2.6+.)

	
fabric.context_managers.cd(path)

	Context manager that keeps directory state when calling operations.

Any calls to run, sudo or local within the wrapped block will
implicitly have a string similar to "cd <path> && " prefixed in order
to give the sense that there is actually statefulness involved.

Because use of cd affects all such invocations, any code making use of
run/sudo/local, such as much of the contrib section, will also be
affected by use of cd. However, at this time, get and put do not
honor cd; we expect this to be addressed in future releases.

Like the actual ‘cd’ shell builtin, cd may be called with relative paths
(keep in mind that your default starting directory is your remote user’s
$HOME) and may be nested as well.

Below is a “normal” attempt at using the shell ‘cd’, which doesn’t work due
to how shell-less SSH connections are implemented – state is not kept
between invocations of run or sudo:

run('cd /var/www')
run('ls')

The above snippet will list the contents of the remote user’s $HOME
instead of /var/www. With cd, however, it will work as expected:

with cd('/var/www'):
 run('ls') # Turns into "cd /var/www && ls"

Finally, a demonstration (see inline comments) of nesting:

with cd('/var/www'):
 run('ls') # cd /var/www && ls
 with cd('website1'):
 run('ls') # cd /var/www/website1 && ls

Note

This context manager is currently implemented by appending to (and, as
always, restoring afterwards) the current value of an environment
variable, env.cwd. However, this implementation may change in the
future, so we do not recommend manually altering env.cwd – only
the behavior of cd will have any guarantee of backwards
compatibility.

	
fabric.context_managers.hide(*groups)

	Context manager for setting the given output groups to False.

groups must be one or more strings naming the output groups defined in
output. The given groups will be set to False for the
duration of the enclosed block, and restored to their previous value
afterwards.

For example, to hide the “[hostname] run:” status lines, as well as
preventing printout of stdout and stderr, one might use hide as follows:

def my_task():
 with hide('running', 'stdout', 'stderr'):
 run('ls /var/www')

	
fabric.context_managers.settings(*args, **kwargs)

	Nest context managers and/or override env variables.

settings serves two purposes:

	Most usefully, it allows temporary overriding/updating of env with
any provided keyword arguments, e.g. with settings(user='foo'):.
Original values, if any, will be restored once the with block closes.

	In addition, it will use contextlib.nested [http://docs.python.org/library/contextlib.html#contextlib.nested] to nest any given
non-keyword arguments, which should be other context managers, e.g.
with settings(hide('stderr'), show('stdout')):.

These behaviors may be specified at the same time if desired. An example
will hopefully illustrate why this is considered useful:

def my_task():
 with settings(
 hide('warnings', 'running', 'stdout', 'stderr'),
 warn_only=True
):
 if run('ls /etc/lsb-release'):
 return 'Ubuntu'
 elif run('ls /etc/redhat-release'):
 return 'RedHat'

The above task executes a run statement, but will warn instead of
aborting if the ls fails, and all output – including the warning
itself – is prevented from printing to the user. The end result, in this
scenario, is a completely silent task that allows the caller to figure out
what type of system the remote host is, without incurring the handful of
output that would normally occur.

Thus, settings may be used to set any combination of environment
variables in tandem with hiding (or showing) specific levels of output, or
in tandem with any other piece of Fabric functionality implemented as a
context manager.

	
fabric.context_managers.show(*groups)

	Context manager for setting the given output groups to True.

groups must be one or more strings naming the output groups defined in
output. The given groups will be set to True for the
duration of the enclosed block, and restored to their previous value
afterwards.

For example, to turn on debug output (which is typically off by default):

def my_task():
 with show('debug'):
 run('ls /var/www')

As almost all output groups are displayed by default, show is most useful
for turning on the normally-hidden debug group, or when you know or
suspect that code calling your own code is trying to hide output with
hide.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Decorators

Convenience decorators for use in fabfiles.

	
fabric.decorators.hosts(*host_list)

	Decorator defining which host or hosts to execute the wrapped function on.

For example, the following will ensure that, barring an override on the
command line, my_func will be run on host1, host2 and
host3, and with specific users on host1 and host3:

@hosts('user1@host1', 'host2', 'user2@host3')
def my_func():
 pass

hosts may be invoked with either an argument list
(@hosts('host1'), @hosts('host1', 'host2')) or a single, iterable
argument (@hosts(['host1', 'host2'])).

Note that this decorator actually just sets the function’s .hosts
attribute, which is then read prior to executing the function.

Changed in version 0.9.2: Allow a single, iterable argument (@hosts(iterable)) to be used
instead of requiring @hosts(*iterable).

	
fabric.decorators.roles(*role_list)

	Decorator defining a list of role names, used to look up host lists.

A role is simply defined as a key in env whose value is a list of one or
more host connection strings. For example, the following will ensure that,
barring an override on the command line, my_func will be executed
against the hosts listed in the webserver and dbserver roles:

env.roledefs.update({
 'webserver': ['www1', 'www2'],
 'dbserver': ['db1']
})

@roles('webserver', 'dbserver')
def my_func():
 pass

As with hosts, roles may be
invoked with either an argument list or a single, iterable argument.
Similarly, this decorator uses the same mechanism as
hosts and simply sets <function>.roles.

Changed in version 0.9.2: Allow a single, iterable argument to be used (same as
hosts).

	
fabric.decorators.runs_once(func)

	Decorator preventing wrapped function from running more than once.

By keeping internal state, this decorator allows you to mark a function
such that it will only run once per Python interpreter session, which in
typical use means “once per invocation of the fab program”.

Any function wrapped with this decorator will silently fail to execute the
2nd, 3rd, ..., Nth time it is called, and will return None in that instance.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Network

Classes and subroutines dealing with network connections and related topics.

	
fabric.network.disconnect_all()

	Disconnect from all currently connected servers.

Used at the end of fab‘s main loop, and also intended for use by
library users.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Operations

Functions to be used in fabfiles and other non-core code, such as run()/sudo().

	
fabric.operations.sudo(command, shell=True, user=None, pty=False)

	Run a shell command on a remote host, with superuser privileges.

As with run(), sudo() executes within a shell command defaulting to
the value of env.shell, although it goes one step further and wraps the
command with sudo as well. Like run, this behavior may be disabled by
specifying shell=False.

You may specify a user keyword argument, which is passed to sudo
and allows you to run as some user other than root (which is the default).
On most systems, the sudo program can take a string username or an
integer userid (uid); user may likewise be a string or an int.

Some remote systems may be configured to disallow sudo access unless a
terminal or pseudoterminal is being used (e.g. when Defaults
requiretty exists in /etc/sudoers.) If updating the remote system’s
sudoers configuration is not possible or desired, you may pass
pty=True to sudo to force allocation of a pseudo tty on the remote
end.

sudo‘s return value is identical to that of run,
exhibiting all the same attributes (.failed, .stderr, etc). Please
see run‘s documentation for details.

Examples:

sudo("~/install_script.py")
sudo("mkdir /var/www/new_docroot", user="www-data")
sudo("ls /home/jdoe", user=1001)
result = sudo("ls /tmp/")

Changed in version 0.9.3: Added stderr and succeeded attributes to the return value.

	
fabric.operations.put(local_path, remote_path, mode=None)

	Upload one or more files to a remote host.

local_path may be a relative or absolute local file path, and may
contain shell-style wildcards, as understood by the Python glob module.
Tilde expansion (as implemented by os.path.expanduser) is also
performed.

remote_path may also be a relative or absolute location, but applied to
the remote host. Relative paths are relative to the remote user’s home
directory, but tilde expansion (e.g. ~/.ssh/) will also be performed if
necessary.

By default, put preserves file modes when uploading. However, you can
also set the mode explicitly by specifying the mode keyword argument,
which sets the numeric mode of the remote file. See the os.chmod
documentation or man chmod for the format of this argument.

Examples:

put('bin/project.zip', '/tmp/project.zip')
put('*.py', 'cgi-bin/')
put('index.html', 'index.html', mode=0755)

	
fabric.operations.run(command, shell=True, pty=False)

	Run a shell command on a remote host.

If shell is True (the default), run() will execute the given
command string via a shell interpreter, the value of which may be
controlled by setting env.shell (defaulting to something similar to
/bin/bash -l -c "<command>".) Any double-quote (") characters in
command will be automatically escaped when shell is True.

run will return the result of the remote program’s stdout as a single
(likely multiline) string. This string will exhibit failed and
succeeded boolean attributes specifying whether the command failed or
succeeded, and will also include the return code as the return_code
attribute. It will also have a stderr attribute containing the remote
standard error, if any.

You may pass pty=True to force allocation of a pseudo tty on
the remote end. This is not normally required, but some programs may
complain (or, even more rarely, refuse to run) if a tty is not present.

Examples:

run("ls /var/www/")
run("ls /home/myuser", shell=False)
output = run('ls /var/www/site1')

Changed in version 0.9.3: Added stderr and succeeded attributes to the return value.

	
fabric.operations.get(remote_path, local_path)

	Download a file from a remote host.

remote_path should point to a specific file, while local_path may
be a directory (in which case the remote filename is preserved) or
something else (in which case the downloaded file is renamed). Tilde
expansion is performed on both ends.

For example, get('~/info.txt', '/tmp/') will create a new file,
/tmp/info.txt, because /tmp is a directory. However, a call such as
get('~/info.txt', '/tmp/my_info.txt') would result in a new file named
/tmp/my_info.txt, as that path didn’t exist (and thus wasn’t a
directory.)

If local_path names a file that already exists locally, that file
will be overwritten without complaint.

Finally, if get detects that it will be run on more than one host, it
will suffix the current host string to the local filename, to avoid
clobbering when it is run multiple times.

For example, the following snippet will produce two files on your local
system, called server.log.host1 and server.log.host2 respectively:

@hosts('host1', 'host2')
def my_download_task():
 get('/var/log/server.log', 'server.log')

However, with a single host (e.g. @hosts('host1')), no suffixing is
performed, leaving you with a single, pristine server.log.

	
fabric.operations.local(command, capture=True)

	Run a command on the local system.

local is simply a convenience wrapper around the use of the builtin
Python subprocess module with shell=True activated. If you need to
do anything special, consider using the subprocess module directly.

local will, by default, capture and return the contents of the command’s
stdout as a string, and will not print anything to the user (the command’s
stderr is captured but discarded).

Note

This differs from the default behavior of run and sudo due to the
different mechanisms involved: it is difficult to simultaneously
capture and print local commands, so we have to choose one or the
other. We hope to address this in later releases.

local‘s return value, like that of run, exhibits the
attributes succeeded/failed (booleans), stderr (string) and
return_code (integer). Please see run‘s API docs
for details, and remember that this return value is only set when
capture=True, as above.

If you need full interactivity with the command being run (and are willing
to accept the loss of captured stdout) you may specify capture=False so
that the subprocess’ stdout and stderr pipes are connected to your terminal
instead of captured by Fabric.

When capture is False, global output controls (output.stdout and
output.stderr will be used to determine what is printed and what is
discarded.

Changed in version 0.9.3: Added the succeeded and stderr return code attributes.

	
fabric.operations.prompt(text, key=None, default='', validate=None)

	Prompt user with text and return the input (like raw_input).

A single space character will be appended for convenience, but nothing
else. Thus, you may want to end your prompt text with a question mark or a
colon, e.g. prompt("What hostname?").

If key is given, the user’s input will be stored as env.<key> in
addition to being returned by prompt. If the key already existed in
env, its value will be overwritten and a warning printed to the user.

If default is given, it is displayed in square brackets and used if the
user enters nothing (i.e. presses Enter without entering any text).
default defaults to the empty string. If non-empty, a space will be
appended, so that a call such as prompt("What hostname?",
default="foo") would result in a prompt of What hostname? [foo] (with
a trailing space after the [foo].)

The optional keyword argument validate may be a callable or a string:

	If a callable, it is called with the user’s input, and should return the
value to be stored on success. On failure, it should raise an exception
with an exception message, which will be printed to the user.

	If a string, the value passed to validate is used as a regular
expression. It is thus recommended to use raw strings in this case. Note
that the regular expression, if it is not fully matching (bounded by
^ and $) it will be made so. In other words, the input must fully
match the regex.

Either way, prompt will re-prompt until validation passes (or the user
hits Ctrl-C).

Examples:

Simplest form:
environment = prompt('Please specify target environment: ')

With default, and storing as env.dish:
prompt('Specify favorite dish: ', 'dish', default='spam & eggs')

With validation, i.e. requiring integer input:
prompt('Please specify process nice level: ', key='nice', validate=int)

With validation against a regular expression:
release = prompt('Please supply a release name',
 validate=r'^\w+-\d+(\.\d+)?$')

	
fabric.operations.reboot(wait)

	Reboot the remote system, disconnect, and wait for wait seconds.

After calling this operation, further execution of run or sudo will
result in a normal reconnection to the server, including any password
prompts.

New in version 0.9.2.

	
fabric.operations.require(*keys, **kwargs)

	Check for given keys in the shared environment dict and abort if not found.

Positional arguments should be strings signifying what env vars should be
checked for. If any of the given arguments do not exist, Fabric will abort
execution and print the names of the missing keys.

The optional keyword argument used_for may be a string, which will be
printed in the error output to inform users why this requirement is in
place. used_for is printed as part of a string similar to:

"Th(is|ese) variable(s) (are|is) used for %s"

so format it appropriately.

The optional keyword argument provided_by may be a list of functions or
function names which the user should be able to execute in order to set the
key or keys; it will be included in the error output if requirements are
not met.

Note: it is assumed that the keyword arguments apply to all given keys as a
group. If you feel the need to specify more than one used_for, for
example, you should break your logic into multiple calls to require().

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Utils

Internal subroutines for e.g. aborting execution with an error message,
or performing indenting on multiline output.

	
fabric.utils.abort(msg)

	Abort execution, print msg to stderr and exit with error status (1.)

This function currently makes use of sys.exit [http://docs.python.org/library/sys.html#sys.exit], which raises
SystemExit [http://docs.python.org/library/exceptions.html#exceptions.SystemExit]. Therefore, it’s possible to detect and recover from inner
calls to abort by using except SystemExit or similar.

	
fabric.utils.fastprint(text, show_prefix=False, end='', flush=True)

	Print text immediately, without any prefix or line ending.

This function is simply an alias of puts with different
default argument values, such that the text is printed without any
embellishment and immediately flushed.

It is useful for any situation where you wish to print text which might
otherwise get buffered by Python’s output buffering (such as within a
processor intensive for loop). Since such use cases typically also
require a lack of line endings (such as printing a series of dots to
signify progress) it also omits the traditional newline by default.

Note

Since fastprint calls puts, it is
likewise subject to the user output level.

New in version 0.9.2.

See also

puts

	
fabric.utils.indent(text, spaces=4, strip=False)

	Return text indented by the given number of spaces.

If text is not a string, it is assumed to be a list of lines and will be
joined by \n prior to indenting.

When strip is True, a minimum amount of whitespace is removed from
the left-hand side of the given string (so that relative indents are
preserved, but otherwise things are left-stripped). This allows you to
effectively “normalize” any previous indentation for some inputs.

	
fabric.utils.puts(text, show_prefix=True, end='\n', flush=False)

	An alias for print whose output is managed by Fabric’s output controls.

In other words, this function simply prints to sys.stdout, but will
hide its output if the user output level is set to False.

If show_prefix=False, puts will omit the leading [hostname]
which it tacks on by default. (It will also omit this prefix if
env.host_string is empty.)

Newlines may be disabled by setting end to the empty string ('').
(This intentionally mirrors Python 3’s print syntax.)

You may force output flushing (e.g. to bypass output buffering) by setting
flush=True.

New in version 0.9.2.

See also

fastprint

	
fabric.utils.warn(msg)

	Print warning message, but do not abort execution.

This function honors Fabric’s output controls and will print the given msg to stderr,
provided that the warnings output level (which is active by default) is
turned on.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Console Output Utilities

Console/terminal user interface functionality.

	
fabric.contrib.console.confirm(question, default=True)

	Ask user a yes/no question and return their response as True or False.

question should be a simple, grammatically complete question such as
“Do you wish to continue?”, and will have a string similar to ” [Y/n] ”
appended automatically. This function will not append a question mark for
you.

By default, when the user presses Enter without typing anything, “yes” is
assumed. This can be changed by specifying default=False.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Django Integration

New in version 0.9.2.

These functions streamline the process of initializing Django’s settings module
environment variable. Once this is done, your fabfile may import from your
Django project, or Django itself, without requiring the use of manage.py
plugins or having to set the environment variable yourself every time you use
your fabfile.

Currently, these functions only allow Fabric to interact with
local-to-your-fabfile Django installations. This is not as limiting as it
sounds; for example, you can use Fabric as a remote “build” tool as well as
using it locally. Imagine the following fabfile:

from fabric.api import run, local, hosts, cd
from fabric.contrib import django

django.project('myproject')
from myproject.myapp.models import MyModel

def print_instances():
 for instance in MyModel.objects.all():
 print(instance)

@hosts('production-server')
def print_production_instances():
 with cd('/path/to/myproject'):
 run('fab print_instances')

With Fabric installed on both ends, you could execute
print_production_instances locally, which would trigger print_instances
on the production server – which would then be interacting with your
production Django database.

As another example, if your local and remote settings are similar, you can use
it to obtain e.g. your database settings, and then use those when executing a
remote (non-Fabric) command. This would allow you some degree of freedom even
if Fabric is only installed locally:

from fabric.api import run
from fabric.contrib import django

django.settings_module('myproject.settings')
from django.conf import settings

def dump_production_database():
 run('mysqldump -u %s -p=%s %s > /tmp/prod-db.sql' % (
 settings.DATABASE_USER,
 settings.DATABASE_PASSWORD,
 settings.DATABASE_NAME
))

The above snippet will work if run from a local, development environment, again
provided your local settings.py mirrors your remote one in terms of
database connection info.

	
fabric.contrib.django.project(name)

	Sets DJANGO_SETTINGS_MODULE to '<name>.settings'.

This function provides a handy shortcut for the common case where one is
using the Django default naming convention for their settings file and
location.

Uses settings_module – see its documentation for details on why and how
to use this functionality.

	
fabric.contrib.django.settings_module(module)

	Set DJANGO_SETTINGS_MODULE shell environment variable to module.

Due to how Django works, imports from Django or a Django project will fail
unless the shell environment variable DJANGO_SETTINGS_MODULE is
correctly set (see the Django settings docs [http://docs.djangoproject.com/en/dev/topics/settings/].)

This function provides a shortcut for doing so; call it near the top of
your fabfile or Fabric-using code, after which point any Django imports
should work correctly.

Note

This function sets a shell environment variable (via
os.environ) and is unrelated to Fabric’s own internal “env”
variables.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

File and Directory Management

Module providing easy API for working with remote files and folders.

	
fabric.contrib.files.append(text, filename, use_sudo=False, partial=True, escape=True)

	Append string (or list of strings) text to filename.

When a list is given, each string inside is handled independently (but in
the order given.)

If text is already found in filename, the append is not run, and
None is returned immediately. Otherwise, the given text is appended to the
end of the given filename via e.g. echo '$text' >> $filename.

The test for whether text already exists defaults to being partial
only, as in ^<text>. Specifying partial=False will change the
effective regex to ^<text>$.

Because text is single-quoted, single quotes will be transparently
backslash-escaped. This can be disabled with escape=False.

If use_sudo is True, will use sudo instead of run.

Changed in version 0.9.1: Added the partial keyword argument.

	
fabric.contrib.files.comment(filename, regex, use_sudo=False, char='#', backup='.bak')

	Attempt to comment out all lines in filename matching regex.

The default commenting character is # and may be overridden by the
char argument.

This function uses the sed function, and will accept the same
use_sudo and backup keyword arguments that sed does.

comment will prepend the comment character to the beginning of the line,
so that lines end up looking like so:

this line is uncommented
#this line is commented
this line is indented and commented

In other words, comment characters will not “follow” indentation as they
sometimes do when inserted by hand. Neither will they have a trailing space
unless you specify e.g. char='# '.

Note

In order to preserve the line being commented out, this function will
wrap your regex argument in parentheses, so you don’t need to. It
will ensure that any preceding/trailing ^ or $ characters are
correctly moved outside the parentheses. For example, calling
comment(filename, r'^foo$') will result in a sed call with the
“before” regex of r'^(foo)$' (and the “after” regex, naturally, of
r'#\1'.)

	
fabric.contrib.files.contains(text, filename, exact=False, use_sudo=False)

	Return True if filename contains text.

By default, this function will consider a partial line match (i.e. where
the given text only makes up part of the line it’s on). Specify
exact=True to change this behavior so that only a line containing
exactly text results in a True return value.

Double-quotes in either text or filename will be automatically
backslash-escaped in order to behave correctly during the remote shell
invocation.

If use_sudo is True, will use sudo instead of run.

	
fabric.contrib.files.exists(path, use_sudo=False, verbose=False)

	Return True if given path exists on the current remote host.

If use_sudo is True, will use sudo instead of run.

exists will, by default, hide all output (including the run line, stdout,
stderr and any warning resulting from the file not existing) in order to
avoid cluttering output. You may specify verbose=True to change this
behavior.

	
fabric.contrib.files.first(*args, **kwargs)

	Given one or more file paths, returns first one found, or None if none
exist. May specify use_sudo which is passed to exists.

	
fabric.contrib.files.sed(filename, before, after, limit='', use_sudo=False, backup='.bak')

	Run a search-and-replace on filename with given regex patterns.

Equivalent to sed -i<backup> -r -e "/<limit>/ s/<before>/<after>/g
<filename>".

For convenience, before and after will automatically escape forward
slashes (and only forward slashes) for you, so you don’t need to
specify e.g. http:\/\/foo\.com, instead just using http://foo\.com
is fine.

If use_sudo is True, will use sudo instead of run.

sed will pass shell=False to run/sudo, in order to avoid problems
with many nested levels of quotes and backslashes.

	
fabric.contrib.files.uncomment(filename, regex, use_sudo=False, char='#', backup='.bak')

	Attempt to uncomment all lines in filename matching regex.

The default comment delimiter is # and may be overridden by the char
argument.

This function uses the sed function, and will accept the same
use_sudo and backup keyword arguments that sed does.

uncomment will remove a single whitespace character following the comment
character, if it exists, but will preserve all preceding whitespace. For
example, # foo would become foo (the single space is stripped) but
`` # foo`` would become `` foo`` (the single space is still stripped,
but the preceding 4 spaces are not.)

	
fabric.contrib.files.upload_template(filename, destination, context=None, use_jinja=False, template_dir=None, use_sudo=False)

	Render and upload a template text file to a remote host.

filename should be the path to a text file, which may contain Python
string interpolation formatting and will be rendered with the given context
dictionary context (if given.)

Alternately, if use_jinja is set to True and you have the Jinja2
templating library available, Jinja will be used to render the template
instead. Templates will be loaded from the invoking user’s current working
directory by default, or from template_dir if given.

The resulting rendered file will be uploaded to the remote file path
destination (which should include the desired remote filename.) If the
destination file already exists, it will be renamed with a .bak
extension.

By default, the file will be copied to destination as the logged-in
user; specify use_sudo=True to use sudo instead.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Project Tools

Useful non-core functionality, e.g. functions composing multiple operations.

	
fabric.contrib.project.rsync_project(*args, **kwargs)

	Synchronize a remote directory with the current project directory via rsync.

Where upload_project() makes use of scp to copy one’s entire
project every time it is invoked, rsync_project() uses the rsync
command-line utility, which only transfers files newer than those on the
remote end.

rsync_project() is thus a simple wrapper around rsync; for
details on how rsync works, please see its manpage. rsync must be
installed on both your local and remote systems in order for this operation
to work correctly.

This function makes use of Fabric’s local() operation, and returns the
output of that function call; thus it will return the stdout, if any, of
the resultant rsync call.

rsync_project() takes the following parameters:

	remote_dir: the only required parameter, this is the path to the
parent directory on the remote server; the project directory will be
created inside this directory. For example, if one’s project directory is
named myproject and one invokes rsync_project('/home/username/'),
the resulting project directory will be /home/username/myproject/.

	local_dir: by default, rsync_project uses your current working
directory as the source directory; you may override this with
local_dir, which should be a directory path.

	exclude: optional, may be a single string, or an iterable of strings,
and is used to pass one or more --exclude options to rsync.

	delete: a boolean controlling whether rsync‘s --delete option
is used. If True, instructs rsync to remove remote files that no
longer exist locally. Defaults to False.

	extra_opts: an optional, arbitrary string which you may use to pass
custom arguments or options to rsync.

Furthermore, this function transparently honors Fabric’s port and SSH key
settings. Calling this function when the current host string contains a
nonstandard port, or when env.key_filename is non-empty, will use the
specified port and/or SSH key filename(s).

For reference, the approximate rsync command-line call that is
constructed by this function is the following:

rsync [--delete] [--exclude exclude[0][, --exclude[1][, ...]]] \
 -pthrvz [extra_opts] <local_dir> <host_string>:<remote_dir>

	
fabric.contrib.project.upload_project()

	Upload the current project to a remote system, tar/gzipping during the move.

This function makes use of the /tmp/ directory and the tar and
gzip programs/libraries; thus it will not work too well on Win32
systems unless one is using Cygwin or something similar.

upload_project will attempt to clean up the tarfiles when it finishes
executing.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Changes in version 0.9

This document details the various backwards-incompatible changes made during
Fabric’s rewrite between versions 0.1 and 0.9. The codebase has been almost
completely rewritten and reorganized and an attempt has been made to remove
“magical” behavior and make things more simple and Pythonic; the fab
command-line component has also been redone to behave more like a typical Unix
program.

Major changes

You’ll want to at least skim the entire document, but the primary changes that
will need to be made to one’s fabfiles are as follows:

Imports

You will need to explicitly import any and all methods or decorators used,
at the top of your fabfile; they are no longer magically available. Here’s a
sample fabfile that worked with 0.1 and earlier:

@hosts('a', 'b')
def my_task():
 run('ls /var/www')
 sudo('mkdir /var/www/newsite')

The above fabfile uses hosts, run and sudo, and so in Fabric 0.9 one
simply needs to import those objects from the new API module fabric.api:

from fabric.api import hosts, run, sudo

@hosts('a', 'b')
def my_task():
 run('ls /var/www')
 sudo('mkdir /var/www/newsite')

You may, if you wish, use from fabric.api import *, though this is
technically not Python best practices; or you may import directly from the
Fabric submodules (e.g. from fabric.decorators import hosts.)
See Fabfile construction and use for more information.

Python version

Fabric started out Python 2.5-only, but became largely 2.4 compatible at one
point during its lifetime. Fabric is once again only compatible with Python
2.5 or newer, in order to take advantage of the various new features and
functions available in that version.

With this change we’re setting an official policy to support the two most
recent stable releases of the Python 2.x line, which at time of writing is 2.5
and 2.6. We feel this is a decent compromise between new features and the
reality of operating system packaging concerns. Given that most users use
Fabric from their workstations, which are typically more up-to-date than
servers, we’re hoping this doesn’t cut out too many folks.

Finally, note that while we will not officially support a 2.4-compatible
version or fork, we may provide a link to such a project if one arises.

Environment/config variables

The config object previously used to access and set internal state
(including Fabric config options) has been renamed to env, but
otherwise remains mostly the same (it allows both dictionary and
object-attribute style access to its data.) env resides in the
state submodule and is importable via fabric.api, so where before
one might have seen fabfiles like this:

def my_task():
 config.foo = 'bar'

one will now be explicitly importing the object like so:

from fabric.api import env

def my_task():
 env.foo = 'bar'

Execution mode

Fabric’s default mode of use, in prior versions, was what we called “broad
mode”: your tasks, as Python code, ran only once, and any calls to functions
that made connections (such as run or sudo) would run once per host in the
current host list. We also offered “deep mode”, in which your entire task
function would run once per host.

In Fabric 0.9, this dichotomy has been removed, and “deep mode” is the
method Fabric uses to perform all operations. This allows you to treat your
Fabfiles much more like regular Python code, including the use of if
statements and so forth, and allows operations like run to unambiguously
return the output from the server.

Other modes of execution such as the old “broad mode” may return as Fabric’s
internals are refactored and expanded, but for now we’ve simplified things, and
deep mode made the most sense as the primary mode of use.

“Lazy” string interpolation

Because of how Fabric used to run in “broad mode” (see previous section) a
special string formatting technique – the use of a bash-like dollar sign
notation, e.g. "hostname: $(fab_host)" – had to be used to allow the
current state of execution to be represented in one’s operations. This is no
longer necessary and has been removed. Because your tasks are executed once
per host, you may build strings normally (e.g. with the % operator) and
refer to env.host_string, env.user and so forth.

For example, Fabric 0.1 had to insert the current username like so:

print("Your current username is $(fab_user)")

Fabric 0.9 and up simply reference env variables as normal:

print("Your current username is %s" % env.user)

As with the execution modes, a special string interpolation function or method
that automatically makes use of env values may find its way back into
Fabric at some point if a need becomes apparent.

Other backwards-incompatible changes

In no particular order:

	The Fabric config file location used to be ~/.fabric; in the interests
of honoring Unix filename conventions, it’s now ~/.fabricrc.

	The old config object (now env) had a getAny method which
took one or more key strings as arguments, and returned the value attached
to the first valid key. This method still exists but has been renamed to
first.

	Environment variables such as fab_host have been renamed to simply e.g.
host. This looks cleaner and feels more natural, and requires less
typing. Users will naturally need to be careful not to override these
variables, but the same holds true for e.g. Python’s builtin methods and
types already, so we felt it was worth the tradeoff.

	Fabric’s version header is no longer printed every time the program runs;
you should now use the standard --version/-V command-line options to
print version and exit.

	The old about command has been removed; other Unix programs don’t
typically offer this. Users can always view the license and warranty info in
their respective text files distributed with the software.

	The old help command is now the typical Unix options -h/--help.

	Furthermore, there is no longer a listing of Fabric’s programming API
available through the command line – those topics impact fabfile
authors, not fab users (even though the former is a subset of the
latter) and should stay in the documentation only.

	prompt‘s primary function is now to return a value to the caller, although
it may still optionally store the entered value in env as well.

	prompt now considers the empty string to be valid input; this allows other
functions to wrap prompt and handle “empty” input on their own terms.

	In addition to the above changes, prompt has been updated to behave more
obviously, as its previous behavior was confusing in a few ways:

	It will now overwrite pre-existing values in the environment dict, but
will print a warning to the user if it does so.

	Additionally, (and this appeared to be undocumented) the default
argument could take a callable as well as a string, and would simply set
the default message to the return value if a callable was given. This
seemed to add unnecessary complexity (given that users may call e.g.
prompt(blah, msg, default=my_callable()) so it has been removed.

	When connecting, Fabric used to use the undocumented fab_pkey env
variable as a method of passing in a Paramiko PKey object to the SSH
client’s connect method. This has been removed in favor of an
ssh-like -i option, which allows one to specify a private key file
to use; that should generally be enough for most users.

	download is now get in order to match up with put (the name mismatch
was due to get being the old method of getting env vars.)

	The noshell argument to sudo (added late in its life to previous
Fabric versions) has been renamed to shell (defaults to True, so the
effective behavior remains the same) and has also been extended to the run
operation.

	Additionally, the global sudo_noshell option has been renamed to
use_shell and also applies to both run and sudo.

	local_per_host has been removed, as it only applied to the now-removed
“broad mode”.

	load has been removed; Fabric is now “just Python”, so use Python’s
import mechanisms in order to stitch multiple fabfiles together.

	abort is no longer an “operation” per se and has been moved to
fabric.utils. It is otherwise the same as before, taking a single
string message, printing it to the user and then calling sys.exit(1).

	rsyncproject and upload_project have been moved into
fabric.contrib (specifically, fabric.contrib.project), which
is intended to be a new tree of submodules for housing “extra” code which
may build on top of the core Fabric operations.

	invoke has been turned on its head, and is now the runs_once decorator
(living in fabric.decorators). When used to decorate a function, that
function will only execute one time during the lifetime of a fab run.
Thus, where you might have used invoke multiple times to ensure a given
command only runs once, you may now use runs_once to decorate the function
and then call it multiple times in a normal fashion.

	It looks like the regex behavior of the validate argument to prompt
was never actually implemented. It now works as advertised.

	Couldn’t think of a good reason for require to be a decorator and a
function, and the function is more versatile in terms of where it may be
used, so the decorator has been removed.

	As things currently stand with the execution model, the depends
decorator doesn’t make a lot of sense: instead, it’s safest/best to simply
make “meta” commands that just call whatever chain of “real” commands you
need performed for a given overarching task.

For example, instead of having command A say
that it “depends on” command B, create a command C which calls A and B in the
right order, e.g.:

def build():
 local('make clean all')

def upload():
 put('app.tgz', '/tmp/app.tgz')
 run('tar xzf /tmp/app.tgz')

def symlink():
 run('ln -s /srv/media/photos /var/www/app/photos')

def deploy():
 build()
 upload()
 symlink()

Note

The execution model is still subject to change as Fabric evolves. Please
don’t hesitate to email the list or the developers if you have a use case
that needs something Fabric doesn’t provide right now!

	Removed the old fab shell functionality, since the move to “just Python”
should make vanilla python/ipython usage of Fabric much easier.

	We may add it back in later as a convenient shortcut to what basically
amounts to running ipython and performing a handful of from
fabric.foo import bar calls.

	The undocumented fab_quiet option has been replaced by a much more granular
set of output controls. For more info, see Managing output.

Changes from alpha 1 to alpha 2

The below list was generated by running git shortlog 0.9a1..0.9a2 and then
manually sifting through and editing the resulting commit messages. This will
probably occur for the rest of the alphas and betas; we hope to use
Sphinx-specific methods of documenting changes once the final release is out
the door.

	Various minor tweaks to the (still in-progress) documentation, including one
thanks to Curt Micol.

	Added a number of TODO items based on user feedback (thanks!)

	Host information now available in granular form (user, host, port) in the
env dict, alongside the full user@host:port host string.

	Parsing of host strings is now more lenient when examining the username
(e.g. hyphens.)

	User/host info no longer cleared out between commands.

	Tweaked setup.py to use find_packages. Thanks to Pat McNerthney.

	Added ‘capture’ argument to local to allow local
interactive tasks.

	Reversed default value of local‘s show_stderr
kwarg; local stderr now prints by default instead of being hidden by
default.

	Various internal fabfile tweaks.

Changes from alpha 2 to alpha 3

	Lots of updates to the documentation and TODO

	Added contrib.files with a handful of file-centric subroutines

	Added contrib.console for console UI stuff (so far, just confirm)

	Reworked config file mechanisms a bit, added CLI flag for setting it.

	Output controls (including CLI args, documentation) have been added

	Test coverage tweaked and grown a small amount (thanks in part to Peter
Ellis)

	Roles overhauled/fixed (more like hosts now)

	Changed --list linewrap behavior to truncate instead.

	Make private key passphrase prompting more obvious to users.

	Add pty option to sudo. Thanks to José Muanis for the tip-off re: get_pty()

	Add CLI argument for setting the shell used in commands (thanks to Steve Steiner)

	Only load host keys when env.reject_unknown_keys is True. Thanks to Pat
McNerthney.

	And many, many additional bugfixes and behavioral tweaks too small to merit
cluttering up this list! Thanks as always to everyone who contributed
bugfixes, feedback and/or patches.

Changes from alpha 3 to beta 1

This is closer to being a straight dump of the Git changelog than the previous
sections; apologies for the overall change in tense.

	Add autodocs for fabric.contrib.console.

	Minor cleanup to package init and setup.py.

	Handle exceptions with strerror attributes that are None instead of strings.

	contrib.files.append may now take a list of strings if desired.

	Straighten out how prompt() deals with trailing whitespace

	Add ‘cd’ context manager.

	Update upload_template to correctly handle backing up target directories.

	upload_template() can now use Jinja2 if it’s installed and user asks for it.

	Handle case where remote host SSH key doesn’t match known_hosts.

	Fix race condition in run/sudo.

	Start fledgling FAQ; extended pty option to run(); related doc tweaks.

	Bring local() in line with run()/sudo() in terms of .failed attribute.

	Add dollar-sign backslash escaping to run/sudo.

	Add FAQ question re: backgrounding processes.

	Extend some of put()’s niceties to get(), plus docstring/comment updates

	Add debug output of chosen fabfile for troubleshooting fabfile discovery.

	Fix Python path bug which sometimes caused Fabric’s internal fabfile to
pre-empt user’s fabfile during load phase.

	Gracefully handle “display” for tasks with no docstring.

	Fix edge case that comes up during some auth/prompt situations.

	Handle carriage returns in output_thread correctly. Thanks to Brian Rosner.

Changes from beta 1 to release candidate 1

As with the previous changelog, this is also mostly a dump of the Git log. We
promise that future changelogs will be more verbose :)

	Near-total overhaul and expansion of documentation (this is the big one!)
Other mentions of documentation in this list are items deserving their own
mention, e.g. FAQ updates.

	Add FAQ question re: passphrase/password prompt

	Vendorized Paramiko: it is now included in our distribution and is no longer
an external dependency, at least until upstream fixes a nasty 1.7.5 bug.

	Fix #34: switch upload_template to use mkstemp (also removes Python 2.5.2+
dependency – now works on 2.5.0 and up)

	Fix #62 by escaping backticks.

	Replace “ls” with “test” in exists()

	Fixes #50. Thanks to Alex Koshelev for the patch.

	local‘s return value now exhibits .return_code.

	Abort on bad role names instead of blowing up.

	Turn off DeprecationWarning when importing paramiko.

	Attempted fix re #32 (dropped output)

	Update role/host initialization logic (was missing some edge cases)

	Add note to install docs re: PyCrypto on win32.

	Add FAQ item re: changing env.shell.

	Rest of TODO migrated to tickets.

	fab test (when in source tree) now uses doctests.

	Add note to compatibility page re: fab_quiet.

	Update local() to honor context_managers.cd()

Changes from release candidate 1 to final release

	Fixed the sed docstring to accurately reflect which
sed options it uses.

	Various changes to internal fabfile, version mechanisms, and other
non-user-facing things.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Changes in version 0.9.1

The following changes were implemented in Fabric 0.9.1:

Feature additions

	#82 [http://code.fabfile.org/issues/show/82]: append now offers a partial kwarg
allowing control over whether the “don’t append if given text already exists”
test looks for exact matches or not. Thanks to Jonas Nockert for the catch
and discussion.

	#112 [http://code.fabfile.org/issues/show/112]: fab --list now prints out the fabfile’s module-level
docstring as a header, if there is one.

	#141 [http://code.fabfile.org/issues/show/141]: Added some more CLI args/env vars to allow user configuration
of the Paramiko connect call – specifically no_agent and
no_keys.

Bugfixes

	#75 [http://code.fabfile.org/issues/show/75]: fab, when called with no arguments or (useful) options, now
prints help, even when no fabfile can be found. Previously, calling fab
in a location with no fabfile would complain about the lack of fabfile
instead of displaying help.

	#130 [http://code.fabfile.org/issues/show/130]: Context managers now correctly clean up env if they
encounter an exception. Thanks to Carl Meyer for catch + patch.

	#132 [http://code.fabfile.org/issues/show/132]: local now calls strip on its stdout,
matching the behavior of run/sudo.
Thanks to Carl Meyer again on this one.

	#166 [http://code.fabfile.org/issues/show/166]: cd now correctly overwrites
env.cwd when given an absolute path, instead of naively appending its
argument to env.cwd‘s previous value.

Documentation updates

	A number of small to medium documentation tweaks were made which had no
specific Redmine ticket. The largest of these is the addition of the
FAQ to the Sphinx documentation instead of storing it as a
source-only text file. (Said FAQ was also slightly expanded with new FAQs.)

	#17 [http://code.fabfile.org/issues/show/17]: Added note to FAQ re: use of dtach as
alternative to screen. Thanks to Erich Heine for the tip.

	#64 [http://code.fabfile.org/issues/show/64]: Updated installation docs to clarify where
package maintainers should be downloading tarballs from. Thanks to James
Pearson for providing the necessary perspective.

	#95 [http://code.fabfile.org/issues/show/95]: Added a link to a given version’s changelog on the PyPI page
(technically, to the setup.py long_description field).

	#110 [http://code.fabfile.org/issues/show/110]: Alphabetized the CLI argument command reference. Thanks to Erich Heine.

	#120 [http://code.fabfile.org/issues/show/120]: Tweaked documentation, help strings to make it more obvious
that fabfiles are simply Python modules.

	#127 [http://code.fabfile.org/issues/show/127]: Added note to install docs re: ActiveState’s
PyPM. Thanks to Sridhar Ratnakumar for the tip.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Changes in version 0.9.2

The following changes were implemented in Fabric 0.9.2:

Feature additions

	The reboot operation has been added, providing a way for
Fabric to issue a reboot command and then reconnect after the system has
restarted.

	python setup.py test now runs Fabric’s test suite (provided you have all
the prerequisites from the requirements.txt installed). Thanks to Eric
Holscher for the patch.

	Added functionality for loading fabfiles which are Python packages
(directories) instead of just modules (single files.) See
Fabfile discovery.

	Added output lines informing the user of which tasks are being executed (e.g.
[myserver] Executing task 'foo'.)

	Added support for lazy (callable) role definition values in env.roledefs.

	Added contrib.django module with basic Django
integration.

	env.local_user was added, providing easy and permanent
access to the local system username, even if an alternate remote username has
been specified.

	#29 [http://code.fabfile.org/issues/show/29]: Added support for arbitrary command-line-driven anonymous tasks
via fab [options] -- [shell command]. See Arbitrary remote shell commands.

	#52 [http://code.fabfile.org/issues/show/52]: Full tracebacks during aborts are now displayed if the user has
opted to see debug-level output.

	#101 [http://code.fabfile.org/issues/show/101]: Added colors module with basic color output support.
(#101 [http://code.fabfile.org/issues/show/101] is still open: we plan to leverage the new module in Fabric’s
own output in the future.)

	#137 [http://code.fabfile.org/issues/show/137]: Commas used to separate per-task arguments may now be escaped
with a backslash. Thanks to Erich Heine for the patch.

	#144 [http://code.fabfile.org/issues/show/144]: hosts (and roles)
will now expand a single, iterable argument instead of requiring one to use
e.g. @hosts(*iterable).

	#151 [http://code.fabfile.org/issues/show/151]: Added a puts utility function, which allows
greater control over fabfile-generated (as opposed to Fabric-generated)
output. Also added fastprint, an alias to
puts allowing for convenient unbuffered,
non-newline-terminated printing.

	#208 [http://code.fabfile.org/issues/show/208]: Users rolling their own shell completion or who otherwise find
themselves performing text manipulation on the output of --list may now use --shortlist to get a plain, newline-separated
list of task names.

Bugfixes

	The interactive “what host to connect to?” prompt now correctly updates the
appropriate environment variables (hostname, username, port) based on user
input.

	Fixed a bug where Fabric’s own internal fabfile would pre-empt the user’s
fabfile due to a PYTHONPATH order issue. User fabfiles are now always loaded
at the front of the PYTHONPATH during import.

	Disabled some DeprecationWarnings thrown by Paramiko when that library is
imported into Fabric under Python 2.6.

	#44 [http://code.fabfile.org/issues/show/44], #63 [http://code.fabfile.org/issues/show/63]: Modified rsync_project to
honor the SSH port and identity file settings. Thanks to Mitch Matuson
and Morgan Goose.

	#123 [http://code.fabfile.org/issues/show/123]: Removed Cygwin from the “are we on Windows” test; now, only
Python installs whose sys.platform says 'win32' will use Windows-only
code paths (e.g. importing of pywin32).

Documentation updates

	Added a few new items to the FAQ.

	#173 [http://code.fabfile.org/issues/show/173]: Simple but rather embarrassing typo fix in README. Thanks to
Ted Nyman for the catch.

	#194 [http://code.fabfile.org/issues/show/194]: Added a note to the install docs about a
possible edge case some Windows 64-bit Python users may encounter.

	#216 [http://code.fabfile.org/issues/show/216]: Overhauled the process backgrounding FAQ
to include additional techniques and be more holistic.

Packaging updates

	#86 [http://code.fabfile.org/issues/show/86], #158 [http://code.fabfile.org/issues/show/158]: Removed the bundled Paramiko 1.7.4 and updated the
setup.py to require Paramiko >=1.7.6. This lets us skip the known-buggy
Paramiko 1.7.5 while getting some much needed bugfixes in Paramiko 1.7.6.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Changes in version 0.9.3

The following changes were implemented in Fabric 0.9.3:

Feature additions

	#255 [http://code.fabfile.org/issues/show/255]: Added stderr and succeeded attributes to
local.

	#254 [http://code.fabfile.org/issues/show/254]: Backported the .stderr and .succeeded attributes on
run/sudo return values, from the
Git master/pre-1.0 branch. Please see those functions’ API docs for details.

Bugfixes

	#228 [http://code.fabfile.org/issues/show/228]: We discovered that the pip + PyCrypto installation problem was
limited to Python 2.5 only, and have updated our setup.py accordingly.

	#230 [http://code.fabfile.org/issues/show/230]: Arbitrary or remainder commands (fab <opts> -- <run command
here>) will no longer blow up when invoked with no fabfile present. Thanks
to IRC user orkaa for the report.

	#242 [http://code.fabfile.org/issues/show/242]: Empty string values in task CLI args now parse correctly.
Thanks to Aaron Levy for the catch + patch.

Documentation updates

	#239 [http://code.fabfile.org/issues/show/239]: Fixed typo in execution usage docs. Thanks to Pradeep Gowda and
Turicas for the catch.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Changes in version 0.9.4

The following changes were implemented in Fabric 0.9.4:

Feature additions

	Added documentation for using Fabric as a library.

	Mentioned our Twitter account [https://twitter.com/pyfabric] on the main
docs page.

	#290 [http://code.fabfile.org/issues/show/290]: Added escape kwarg to append to
allow control over previously automatic single-quote escaping.

Bugfixes

	N/A

Documentation updates

	N/A

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Fabric 0.9.5 documentation

 Please note

 This version of Fabric is outdated. If you're looking for the
 latest stable release, please click here.

Changes in version 0.9.5

The following changes were implemented in Fabric 0.9.5:

Feature additions

	N/A

Bugfixes

	#37 [http://code.fabfile.org/issues/show/37]: Internal refactoring of a Paramiko call from _transport to
get_transport().

	#258 [http://code.fabfile.org/issues/show/258]: Modify subprocess call on Windows platforms to avoid
space/quote problems in local. Thanks to Henrik
Heimbuerger and Raymond Cote for catch + suggested fixes.

	#261 [http://code.fabfile.org/issues/show/261]: Fix bug in comment which truncated
regexen ending with $. Thanks to Antti Kaihola for the catch.

	#264 [http://code.fabfile.org/issues/show/264]: Fix edge case in reboot by gracefully
clearing connection cache. Thanks to Jason Gerry for the report &
troubleshooting.

	#268 [http://code.fabfile.org/issues/show/268]: Allow for @ symbols in usernames, which is valid on some
systems. Fabric’s host-string parser now splits username and hostname at the
last @ found instead of the first. Thanks to Thadeus Burgess for the
report.

	#287 [http://code.fabfile.org/issues/show/287]: Fix bug in password prompt causing occasional tracebacks.
Thanks to Antti Kaihola for the catch and Rick Harding for testing the
proposed solution.

	#288 [http://code.fabfile.org/issues/show/288]: Use temporary files to work around the lack of a -i flag in
OpenBSD and NetBSD sed. Thanks to Morgan Lefieux for
catch + patches.

	#305 [http://code.fabfile.org/issues/show/305]: Strip whitespace from hostnames to help prevent user error.
Thanks to Michael Bravo for the report and Rick Harding for the patch.

	#316 [http://code.fabfile.org/issues/show/316]: Use of settings with key names not
previously set in env no longer raises KeyErrors. Whoops. Thanks to Adam
Ernst for the catch.

Documentation updates

	#228 [http://code.fabfile.org/issues/show/228]: Added description of the PyCrypto + pip + Python 2.5 problem to
the documentation and removed the Python 2.5 check from setup.py.

	#291 [http://code.fabfile.org/issues/show/291]: Updated the PyPM-related install docs re: recent changes in
PyPM and its download URLs. Thanks to Sridhar Ratnakumar for the patch.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	Fabric 0.9.5 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 fabric	

 	
 	
 fabric.colors	

 	
 	
 fabric.context_managers	

 	
 	
 fabric.contrib.console	

 	
 	
 fabric.contrib.django	

 	
 	
 fabric.contrib.files	

 	
 	
 fabric.contrib.project	

 	
 	
 fabric.decorators	

 	
 	
 fabric.network	

 	
 	
 fabric.operations	

 	
 	
 fabric.utils	

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	Fabric 0.9.5 documentation

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | U
 | W
 | Y

Symbols

 	

 	
 --hide=LEVELS

 	

 	command line option

 	
 --shortlist

 	

 	command line option

 	
 --show=LEVELS

 	

 	command line option

 	
 -a

 	

 	command line option

 	
 -c RCFILE, --config=RCFILE

 	

 	command line option

 	
 -d COMMAND, --display=COMMAND

 	

 	command line option

 	
 -D, --disable-known-hosts

 	

 	command line option

 	
 -f FABFILE, --fabfile=FABFILE

 	

 	command line option

 	
 -H HOSTS, --hosts=HOSTS

 	

 	command line option

 	
 -h, --help

 	

 	command line option

 	

 	
 -i KEY_FILENAME

 	

 	command line option

 	
 -k

 	

 	command line option

 	
 -l, --list

 	

 	command line option

 	
 -p PASSWORD, --password=PASSWORD

 	

 	command line option

 	
 -R ROLES, --roles=ROLES

 	

 	command line option

 	
 -r, --reject-unknown-hosts

 	

 	command line option

 	
 -s SHELL, --shell=SHELL

 	

 	command line option

 	
 -u USER, --user=USER

 	

 	command line option

 	
 -V, --version

 	

 	command line option

 	
 -w, --warn-only

 	

 	command line option

A

 	

 	abort() (in module fabric.utils)

 	

 	append() (in module fabric.contrib.files)

B

 	

 	blue() (in module fabric.colors)

C

 	

 	cd() (in module fabric.context_managers)

 	
 command line option

 	

 	--hide=LEVELS

 	--shortlist

 	--show=LEVELS

 	-D, --disable-known-hosts

 	-H HOSTS, --hosts=HOSTS

 	-R ROLES, --roles=ROLES

 	-V, --version

 	-a

 	-c RCFILE, --config=RCFILE

 	-d COMMAND, --display=COMMAND

 	-f FABFILE, --fabfile=FABFILE

 	-h, --help

 	-i KEY_FILENAME

 	-k

 	-l, --list

 	-p PASSWORD, --password=PASSWORD

 	-r, --reject-unknown-hosts

 	-s SHELL, --shell=SHELL

 	-u USER, --user=USER

 	-w, --warn-only

 	comment() (in module fabric.contrib.files)

 	

 	confirm() (in module fabric.contrib.console)

 	contains() (in module fabric.contrib.files)

 	cyan() (in module fabric.colors)

D

 	

 	disconnect_all() (in module fabric.network)

E

 	

 	exists() (in module fabric.contrib.files)

F

 	

 	fabric.colors (module)

 	fabric.context_managers (module)

 	fabric.contrib.console (module)

 	fabric.contrib.django (module)

 	fabric.contrib.files (module)

 	fabric.contrib.project (module)

 	

 	fabric.decorators (module)

 	fabric.network (module)

 	fabric.operations (module)

 	fabric.utils (module)

 	fastprint() (in module fabric.utils)

 	first() (in module fabric.contrib.files)

G

 	

 	get() (in module fabric.operations)

 	

 	green() (in module fabric.colors)

H

 	

 	hide() (in module fabric.context_managers)

 	

 	hosts() (in module fabric.decorators)

I

 	

 	indent() (in module fabric.utils)

L

 	

 	local() (in module fabric.operations)

M

 	

 	magenta() (in module fabric.colors)

P

 	

 	project() (in module fabric.contrib.django)

 	prompt() (in module fabric.operations)

 	

 	put() (in module fabric.operations)

 	puts() (in module fabric.utils)

R

 	

 	reboot() (in module fabric.operations)

 	red() (in module fabric.colors)

 	require() (in module fabric.operations)

 	roles() (in module fabric.decorators)

 	

 	rsync_project() (in module fabric.contrib.project)

 	run() (in module fabric.operations)

 	runs_once() (in module fabric.decorators)

S

 	

 	sed() (in module fabric.contrib.files)

 	settings() (in module fabric.context_managers)

 	settings_module() (in module fabric.contrib.django)

 	

 	show() (in module fabric.context_managers)

 	sudo() (in module fabric.operations)

U

 	

 	uncomment() (in module fabric.contrib.files)

 	upload_project() (in module fabric.contrib.project)

 	

 	upload_template() (in module fabric.contrib.files)

W

 	

 	warn() (in module fabric.utils)

 	

 	white() (in module fabric.colors)

Y

 	

 	yellow() (in module fabric.colors)

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 _static/comment.png

_static/down.png

_static/file.png

_static/up-pressed.png

_static/comment-close.png

_static/minus.png

_static/down-pressed.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Fabric 0.9.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

_static/up.png

_static/plus.png

_static/ajax-loader.gif

