
Fabric
Release

Oct 15, 2021

Contents

1 Getting started 3
1.1 Getting started . 3

2 Upgrading from 1.x 9

3 Concepts 11
3.1 Authentication . 11
3.2 Configuration . 12
3.3 Networking . 16

4 The fab CLI tool 19
4.1 Command-line interface . 19

5 API 23
5.1 config . 23
5.2 connection . 25
5.3 exceptions . 31
5.4 executor . 31
5.5 group . 31
5.6 runners . 34
5.7 tasks . 34
5.8 testing . 35
5.9 transfer . 39
5.10 tunnels . 41
5.11 util . 42

Python Module Index 43

Index 45

i

ii

Fabric, Release

This site covers Fabric’s usage & API documentation. For basic info on what Fabric is, including its public changelog
& how the project is maintained, please see the main project website.

Contents 1

http://fabfile.org

Fabric, Release

2 Contents

CHAPTER 1

Getting started

Many core ideas & API calls are explained in the tutorial/getting-started document:

1.1 Getting started

Welcome! This tutorial highlights Fabric’s core features; for further details, see the links within, or the documentation
index which has links to conceptual and API doc sections.

1.1.1 A note about imports

Fabric composes a couple of other libraries as well as providing its own layer on top; user code will most often import
from the fabric package, but you’ll sometimes import directly from invoke or paramiko too:

• Invoke implements CLI parsing, task organization, and shell command execution (a generic framework plus
specific implementation for local commands.)

– Anything that isn’t specific to remote systems tends to live in Invoke, and it is often used standalone by
programmers who don’t need any remote functionality.

– Fabric users will frequently import Invoke objects, in cases where Fabric itself has no need to subclass or
otherwise modify what Invoke provides.

• Paramiko implements low/mid level SSH functionality - SSH and SFTP sessions, key management, etc.

– Fabric mostly uses this under the hood; users will only rarely import from Paramiko directly.

• Fabric glues the other libraries together and provides its own high level objects too, e.g.:

– Subclassing Invoke’s context and command-runner classes, wrapping them around Paramiko-level primi-
tives;

– Extending Invoke’s configuration system by using Paramiko’s ssh_config parsing machinery;

– Implementing new high-level primitives of its own, such as port-forwarding context managers. (These
may, in time, migrate downwards into Paramiko.)

3

https://www.pyinvoke.org
https://www.paramiko.org

Fabric, Release

1.1.2 Run commands via Connections and run

The most basic use of Fabric is to execute a shell command on a remote system via SSH, then (optionally) interrogate
the result. By default, the remote program’s output is printed directly to your terminal, and captured. A basic example:

>>> from fabric import Connection
>>> c = Connection('web1')
>>> result = c.run('uname -s')
Linux
>>> result.stdout.strip() == 'Linux'
True
>>> result.exited
0
>>> result.ok
True
>>> result.command
'uname -s'
>>> result.connection
<Connection host=web1>
>>> result.connection.host
'web1'

Meet Connection, which represents an SSH connection and provides the core of Fabric’s API, such as run.
Connection objects need at least a hostname to be created successfully, and may be further parameterized by
username and/or port number. You can give these explicitly via args/kwargs:

Connection(host='web1', user='deploy', port=2202)

Or by stuffing a [user@]host[:port] string into the host argument (though this is purely convenience; always
use kwargs whenever ambiguity appears!):

Connection('deploy@web1:2202')

Connection objects’ methods (like run) usually return instances of invoke.runners.Result (or subclasses
thereof) exposing the sorts of details seen above: what was requested, what happened while the remote action occurred,
and what the final result was.

Note: Many lower-level SSH connection arguments (such as private keys and timeouts) can be given directly to the
SSH backend by using the connect_kwargs argument.

1.1.3 Superuser privileges via auto-response

Need to run things as the remote system’s superuser? You could invoke the sudo program via run, and (if your
remote system isn’t configured with passwordless sudo) respond to the password prompt by hand, as below. (Note
how we need to request a remote pseudo-terminal; most sudo implementations get grumpy at password-prompt time
otherwise.)

>>> from fabric import Connection
>>> c = Connection('db1')
>>> c.run('sudo useradd mydbuser', pty=True)
[sudo] password:
<Result cmd='sudo useradd mydbuser' exited=0>
>>> c.run('id -u mydbuser')

4 Chapter 1. Getting started

http://docs.pyinvoke.org/en/latest/api/runners.html#invoke.runners.Result

Fabric, Release

1001
<Result cmd='id -u mydbuser' exited=0>

Giving passwords by hand every time can get old; thankfully Invoke’s powerful command-execution functionality
includes the ability to auto-respond to program output with pre-defined input. We can use this for sudo:

>>> from invoke import Responder
>>> from fabric import Connection
>>> c = Connection('host')
>>> sudopass = Responder(
... pattern=r'\[sudo\] password:',
... response='mypassword\n',
...)
>>> c.run('sudo whoami', pty=True, watchers=[sudopass])
[sudo] password:
root
<Result cmd='sudo whoami' exited=0>

It’s difficult to show in a snippet, but when the above was executed, the user didn’t need to type anything;
mypassword was sent to the remote program automatically. Much easier!

The sudo helper

Using watchers/responders works well here, but it’s a lot of boilerplate to set up every time - especially as real-world
use cases need more work to detect failed/incorrect passwords.

To help with that, Invoke provides a Context.sudo method which handles most of the boilerplate for you (as
Connection subclasses Context, it gets this method for free.) sudo doesn’t do anything users can’t do themselves
- but as always, common problems are best solved with commonly shared solutions.

All the user needs to do is ensure the sudo.password configuration value is filled in (via config file, environment
variable, or --prompt-for-sudo-password) and Connection.sudo handles the rest. For the sake of clarity,
here’s an example where a library/shell user performs their own getpass-based password prompt:

>>> import getpass
>>> from fabric import Connection, Config
>>> sudo_pass = getpass.getpass("What's your sudo password?")
What's your sudo password?
>>> config = Config(overrides={'sudo': {'password': sudo_pass}})
>>> c = Connection('db1', config=config)
>>> c.sudo('whoami', hide='stderr')
root
<Result cmd="...whoami" exited=0>
>>> c.sudo('useradd mydbuser')
<Result cmd="...useradd mydbuser" exited=0>
>>> c.run('id -u mydbuser')
1001
<Result cmd='id -u mydbuser' exited=0>

We filled in the sudo password up-front at runtime in this example; in real-world situations, you might also supply it
via the configuration system (perhaps using environment variables, to avoid polluting config files), or ideally, use a
secrets management system.

1.1. Getting started 5

http://docs.pyinvoke.org/en/latest/concepts/watchers.html#autoresponding
http://docs.pyinvoke.org/en/latest/api/context.html#invoke.context.Context.sudo
http://docs.pyinvoke.org/en/latest/api/context.html#invoke.context.Context
http://docs.pyinvoke.org/en/latest/api/context.html#invoke.context.Context.sudo
http://docs.pyinvoke.org/en/latest/invoke.html#cmdoption-prompt-for-sudo-password
https://docs.python.org/3/library/getpass.html#module-getpass

Fabric, Release

1.1.4 Transfer files

Besides shell command execution, the other common use of SSH connections is file transfer; Connection.put
and Connection.get exist to fill this need. For example, say you had an archive file you wanted to upload:

>>> from fabric import Connection
>>> result = Connection('web1').put('myfiles.tgz', remote='/opt/mydata/')
>>> print("Uploaded {0.local} to {0.remote}".format(result))
Uploaded /local/myfiles.tgz to /opt/mydata/

These methods typically follow the behavior of cp and scp/sftp in terms of argument evaluation - for example, in
the above snippet, we omitted the filename part of the remote path argument.

1.1.5 Multiple actions

One-liners are good examples but aren’t always realistic use cases - one typically needs multiple steps to do anything
interesting. At the most basic level, you could do this by calling Connection methods multiple times:

from fabric import Connection
c = Connection('web1')
c.put('myfiles.tgz', '/opt/mydata')
c.run('tar -C /opt/mydata -xzvf /opt/mydata/myfiles.tgz')

You could (but don’t have to) turn such blocks of code into functions, parameterized with a Connection object from
the caller, to encourage reuse:

def upload_and_unpack(c):
c.put('myfiles.tgz', '/opt/mydata')
c.run('tar -C /opt/mydata -xzvf /opt/mydata/myfiles.tgz')

As you’ll see below, such functions can be handed to other API methods to enable more complex use cases as well.

1.1.6 Multiple servers

Most real use cases involve doing things on more than one server. The straightforward approach could be to iterate
over a list or tuple of Connection arguments (or Connection objects themselves, perhaps via map):

>>> from fabric import Connection
>>> for host in ('web1', 'web2', 'mac1'):
... result = Connection(host).run('uname -s')
... print("{}: {}".format(host, result.stdout.strip()))
...
...
web1: Linux
web2: Linux
mac1: Darwin

This approach works, but as use cases get more complex it can be useful to think of a collection of hosts as a single
object. Enter Group, a class wrapping one-or-more Connection objects and offering a similar API; specifically,
you’ll want to use one of its concrete subclasses like SerialGroup or ThreadingGroup.

The previous example, using Group (SerialGroup specifically), looks like this:

>>> from fabric import SerialGroup as Group
>>> results = Group('web1', 'web2', 'mac1').run('uname -s')

6 Chapter 1. Getting started

Fabric, Release

>>> print(results)
<GroupResult: {

<Connection 'web1'>: <CommandResult 'uname -s'>,
<Connection 'web2'>: <CommandResult 'uname -s'>,
<Connection 'mac1'>: <CommandResult 'uname -s'>,

}>
>>> for connection, result in results.items():
... print("{0.host}: {1.stdout}".format(connection, result))
...
...
web1: Linux
web2: Linux
mac1: Darwin

Where Connection methods return single Result objects (e.g. fabric.runners.Result), Group methods
return GroupResult - dict-like objects offering access to individual per-connection results as well as metadata
about the entire run.

When any individual connections within the Group encounter errors, the GroupResult is lightly wrapped in a
GroupException, which is raised. Thus the aggregate behavior resembles that of individual Connection meth-
ods, returning a value on success or raising an exception on failure.

1.1.7 Bringing it all together

Finally, we arrive at the most realistic use case: you’ve got a bundle of commands and/or file transfers and you want
to apply it to multiple servers. You could use multiple Group method calls to do this:

from fabric import SerialGroup as Group
pool = Group('web1', 'web2', 'web3')
pool.put('myfiles.tgz', '/opt/mydata')
pool.run('tar -C /opt/mydata -xzvf /opt/mydata/myfiles.tgz')

That approach falls short as soon as logic becomes necessary - for example, if you only wanted to perform the copy-
and-untar above when /opt/mydata is empty. Performing that sort of check requires execution on a per-server
basis.

You could fill that need by using iterables of Connection objects (though this foregoes some benefits of using
Groups):

from fabric import Connection
for host in ('web1', 'web2', 'web3'):

c = Connection(host)
if c.run('test -f /opt/mydata/myfile', warn=True).failed:

c.put('myfiles.tgz', '/opt/mydata')
c.run('tar -C /opt/mydata -xzvf /opt/mydata/myfiles.tgz')

Alternatively, remember how we used a function in that earlier example? You can go that route instead:

from fabric import SerialGroup as Group

def upload_and_unpack(c):
if c.run('test -f /opt/mydata/myfile', warn=True).failed:

c.put('myfiles.tgz', '/opt/mydata')
c.run('tar -C /opt/mydata -xzvf /opt/mydata/myfiles.tgz')

for connection in Group('web1', 'web2', 'web3'):
upload_and_unpack(connection)

1.1. Getting started 7

https://docs.python.org/3/library/stdtypes.html#dict

Fabric, Release

The only convenience this final approach lacks is a useful analogue to Group.run - if you want to track the results
of all the upload_and_unpack call as an aggregate, you have to do that yourself. Look to future feature releases
for more in this space!

1.1.8 Addendum: the fab command-line tool

It’s often useful to run Fabric code from a shell, e.g. deploying applications or running sysadmin jobs on arbitrary
servers. You could use regular Invoke tasks with Fabric library code in them, but another option is Fabric’s own
“network-oriented” tool, fab.

fab wraps Invoke’s CLI mechanics with features like host selection, letting you quickly run tasks on various servers
- without having to define host kwargs on all your tasks or similar.

Note: This mode was the primary API of Fabric 1.x; as of 2.0 it’s just a convenience. Whenever your use case falls
outside these shortcuts, it should be easy to revert to the library API directly (with or without Invoke’s less opinionated
CLI tasks wrapped around it).

For a final code example, let’s adapt the previous example into a fab task module called fabfile.py:

from fabric import task

@task
def upload_and_unpack(c):

if c.run('test -f /opt/mydata/myfile', warn=True).failed:
c.put('myfiles.tgz', '/opt/mydata')
c.run('tar -C /opt/mydata -xzvf /opt/mydata/myfiles.tgz')

Not hard - all we did was copy our temporary task function into a file and slap a decorator on it. task tells the CLI
machinery to expose the task on the command line:

$ fab --list
Available tasks:

upload_and_unpack

Then, when fab actually invokes a task, it knows how to stitch together arguments controlling target servers, and run
the task once per server. To run the task once on a single server:

$ fab -H web1 upload_and_unpack

When this occurs, c inside the task is set, effectively, to Connection("web1") - as in earlier examples. Similarly,
you can give more than one host, which runs the task multiple times, each time with a different Connection instance
handed in:

$ fab -H web1,web2,web3 upload_and_unpack

8 Chapter 1. Getting started

http://docs.pyinvoke.org/en/latest/getting-started.html#defining-and-running-task-functions

CHAPTER 2

Upgrading from 1.x

Looking to upgrade from Fabric 1.x? See our detailed upgrade guide on the nonversioned main project site.

9

http://www.fabfile.org/upgrading.html#upgrading

Fabric, Release

10 Chapter 2. Upgrading from 1.x

CHAPTER 3

Concepts

Dig deeper into specific topics:

3.1 Authentication

Even in the ‘vanilla’ OpenSSH client, authenticating to remote servers involves multiple potential sources for secrets
and configuration; Fabric not only supports most of those, but has more of its own. This document outlines the
available methods for setting authentication secrets.

Note: Since Fabric itself tries not to reinvent too much Paramiko functionality, most of the time configuring authenti-
cation values boils down to “how to set keyword argument values for SSHClient.connect”, which in turn means
to set values inside either the connect_kwargs config subtree, or the connect_kwargs keyword argument of
Connection.

3.1.1 Private key files

Private keys stored on-disk are probably the most common auth mechanism for SSH. Fabric offers multiple methods
of configuring which paths to use, most of which end up merged into one list of paths handed to SSHClient.
connect(key_filename=[...]), in the following order:

• If a key_filename key exists in the connect_kwargs argument to Connection, they come first in the
list. (This is basically the “runtime” option for non-CLI users.)

• The config setting connect_kwargs.key_filename can be set in a number of ways (as per the config
docs) including via the --identity CLI flag (which sets the overrides level of the config; so when this
flag is used, key filename values from other config sources will be overridden.) This value comes next in the
overall list.

• Using an ssh_config file with IdentityFile directives lets you share configuration with other SSH clients;
such values come last.

11

http://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient.connect

Fabric, Release

Encryption passphrases

If your private key file is protected via a passphrase, it can be supplied in a handful of ways:

• The connect_kwargs.passphrase config option is the most direct way to supply a passphrase to be used
automatically.

Note: Using actual on-disk config files for this type of material isn’t always wise, but recall that the config-
uration system is capable of loading data from other sources, such as your shell environment or even arbitrary
remote databases.

• If you prefer to enter the passphrase manually at runtime, you may use the command-line option
--prompt-for-passphrase, which will cause Fabric to interactively prompt the user at the start of the
process, and store the entered value in connect_kwargs.passphrase (at the ‘overrides’ level.)

3.1.2 Private key objects

Instantiate your own PKey object (see its subclasses’ API docs for details) and place it into connect_kwargs.
pkey. That’s it! You’ll be responsible for any handling of passphrases, if the key material you’re loading (these
classes can load from file paths or strings) is encrypted.

3.1.3 SSH agents

By default (similar to how OpenSSH behaves) Paramiko will attempt to connect to a running SSH agent (Unix
style, e.g. a live SSH_AUTH_SOCK, or Pageant if one is on Windows). This can be disabled by setting
connect_kwargs.allow_agent to False.

3.1.4 Passwords

Password authentication is relatively straightforward:

• You can configure it via connect_kwargs.password directly.

• If you want to be prompted for it at the start of a session, specify --prompt-for-login-password.

3.1.5 GSSAPI

Fabric doesn’t provide any extra GSSAPI support on top of Paramiko’s existing connect-time parameters (see e.g.
gss_kex/gss_auth/gss_host/etc in SSHClient.connect) and the modules implementing the functionality
itself (such as paramiko.ssh_gss.) Thus, as usual, you should be looking to modify the connect_kwargs
configuration tree.

3.2 Configuration

3.2.1 Basics

The heart of Fabric’s configuration system (as with much of the rest of Fabric) relies on Invoke functionality, namely
invoke.config.Config (technically, a lightweight subclass, fabric.config.Config). For practical de-
tails on what this means re: configuring Fabric’s behavior, please see Invoke’s configuration documentation.

12 Chapter 3. Concepts

http://docs.paramiko.org/en/latest/api/keys.html#paramiko.pkey.PKey
http://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient.connect
http://docs.paramiko.org/en/latest/api/ssh_gss.html#module-paramiko.ssh_gss
http://docs.pyinvoke.org/en/latest/api/config.html#invoke.config.Config
http://docs.pyinvoke.org/en/latest/concepts/configuration.html#configuration

Fabric, Release

The primary differences from that document are as follows:

• The configuration file paths sought are all named fabric.* instead of invoke.* - e.g. /etc/fabric.
yml instead of /etc/invoke.yml, ~/.fabric.py instead of ~/.invoke.py, etc.

• In addition to Invoke’s own default configuration values, Fabric merges in some of its own, such as the fact that
SSH’s default port number is 22. See Default configuration values for details.

• Fabric has facilities for loading SSH config files, and will automatically create (or update) a configuration subtree
on a per Connection basis, loaded with the interpreted SSH configuration for that specific host (since an SSH
config file is only ever useful via such a lens). See Loading and using ssh_config files.

• Fabric plans to offer a framework for managing per-host and per-host-collection configuration details and over-
rides, though this is not yet implemented (it will be analogous to, but improved upon, the env.hosts and
env.roles structures from Fabric 1.x).

– This functionality will supplement that of the SSH config loading described earlier; we expect most users
will prefer to configure as much as possible via an SSH config file, but not all Fabric settings have
ssh_config analogues, nor do all use cases fit neatly into such files.

3.2.2 Default configuration values

Overrides of Invoke-level defaults

• run.replace_env: True, instead of False, so that remote commands run with a ‘clean’, empty environ-
ment instead of inheriting a copy of the current process’ environment.

This is for security purposes: leaking local environment data remotely by default would be unsanitary. It’s also
compatible with the behavior of OpenSSH.

See also:

The warning under paramiko.channel.Channel.set_environment_variable.

Extensions to Invoke-level defaults

• runners.remote: In Invoke, the runners tree has a single subkey, local (mapping to Local). Fabric
adds this new subkey, remote, which is mapped to Remote.

New default values defined by Fabric

Note: Most of these settings are also available in the constructor of Connection, if they only need modification on
a per-connection basis.

Warning: Many of these are also configurable via ssh_config files. Such values take precedence over those
defined via the core configuration, so make sure you’re aware of whether you’re loading such files (or disable
them to be sure).

• connect_kwargs: Keyword arguments (dict) given to SSHClient.connect when Connection per-
forms that method call. This is the primary configuration vector for many SSH-related options, such as selecting
private keys, toggling forwarding of SSH agents, etc. Default: {}.

3.2. Configuration 13

http://docs.pyinvoke.org/en/latest/concepts/configuration.html#default-values
http://docs.paramiko.org/en/latest/api/channel.html#paramiko.channel.Channel.set_environment_variable
http://docs.pyinvoke.org/en/latest/api/runners.html#invoke.runners.Local
https://docs.python.org/3/library/stdtypes.html#dict
http://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient.connect

Fabric, Release

• forward_agent: Whether to attempt forwarding of your local SSH authentication agent to the remote end.
Default: False (same as in OpenSSH.)

• gateway: Used as the default value of the gateway kwarg for Connection. May be any value accepted
by that argument. Default: None.

• load_ssh_configs: Whether to automatically seek out SSH config files. When False, no automatic
loading occurs. Default: True.

• port: TCP port number used by Connection objects when not otherwise specified. Default: 22.

• inline_ssh_env: Boolean serving as global default for the value of Connection’s inline_ssh_env
parameter; see its docs for details. Default: False.

• ssh_config_path: Runtime SSH config path; see Loading and using ssh_config files. Default: None.

• timeouts: Various timeouts, specifically:

– connect: Connection timeout, in seconds; defaults to None, meaning no timeout / block forever.

• user: Username given to the remote sshd when connecting. Default: your local system username.

3.2.3 Loading and using ssh_config files

How files are loaded

Fabric uses Paramiko’s SSH config file machinery to load and parse ssh_config-format files (following OpenSSH’s
behavior re: which files to load, when possible):

• An already-parsed SSHConfig object may be given to Config.__init__ via its ssh_config keyword
argument; if this value is given, no files are loaded, even if they exist.

• A runtime file path may be specified via configuration itself, as the ssh_config_path key; such a path will
be loaded into a new SSHConfig object at the end of Config.__init__ and no other files will be sought
out.

– It will be filled in by the fab CLI tool if the --ssh-config flag is given.

• If no runtime config (object or path) was given to Config.__init__, it will automatically seek out and load
~/.ssh/config and/or /etc/ssh/ssh_config, if they exist (and in that order.)

Note: Rules present in both files will result in the user-level file ‘winning’, as the first rule found during lookup
is always used.

• If none of the above vectors yielded SSH config data, a blank/empty SSHConfig is the final result.

• Regardless of how the object was generated, it is exposed as Config.base_ssh_config.

Connection’s use of ssh_config values

Connection objects expose a per-host ‘view’ of their config’s SSH data (obtained via lookup) as Connection.
ssh_config. Connection itself references these values as described in the following subsections, usually as
simple defaults for the appropriate config key or parameter (port, forward_agent, etc.)

Unless otherwise specified, these values override regular configuration values for the same keys, but may themselves
be overridden by Connection.__init__ parameters.

Take for example a ~/.fabric.yaml:

14 Chapter 3. Concepts

http://docs.paramiko.org/en/latest/api/config.html#paramiko.config.SSHConfig
http://docs.paramiko.org/en/latest/api/config.html#paramiko.config.SSHConfig
http://docs.paramiko.org/en/latest/api/config.html#paramiko.config.SSHConfig
http://docs.paramiko.org/en/latest/api/config.html#paramiko.config.SSHConfig.lookup

Fabric, Release

user: foo

Absent any other configuration, Connection('myhost') connects as the foo user.

If we also have an ~/.ssh/config:

Host *
User bar

then Connection('myhost') connects as bar (the SSH config wins over the Fabric config.)

However, in both cases, Connection('myhost', user='biz') will connect as biz.

Note: The below sections use capitalized versions of ssh_config keys for easier correlation with man
ssh_config, but the actual SSHConfig data structure is normalized to lowercase keys, since SSH config files
are technically case-insensitive.

Connection parameters

• Hostname: replaces the original value of host (which is preserved as .original_host.)

• Port: supplies the default value for the port config option / parameter.

• User: supplies the default value for the user config option / parameter.

• ConnectTimeout: sets the default value for the timeouts.connect config option / timeout parameter.

Proxying

• ProxyCommand: supplies default (string) value for gateway.

• ProxyJump: supplies default (Connection) value for gateway.

– Nested-style ProxyJump, i.e. user1@hop1.host,user2@hop2.host,..., will result
in an appropriate series of nested gateway values under the hood - as if the user
had manually specified Connecton(..., gateway=Connection('user1@hop1.host',
gateway=Connection('user2@hop2.host', gateway=...))).

Note: If both are specified for a given host, ProxyJump will override ProxyCommand. This is slightly different
from OpenSSH, where the order the directives are loaded determines which one wins. Doing so on our end (where we
view the config as a dictionary structure) requires additional work.

Authentication

• ForwardAgent: controls default behavior of forward_agent.

• IdentityFile: appends to the key_filename key within connect_kwargs (similar to
--identity .)

3.2. Configuration 15

http://docs.paramiko.org/en/latest/api/config.html#paramiko.config.SSHConfig

Fabric, Release

Disabling (most) ssh_config loading

Users who need tighter control over how their environment gets configured may want to disable the automatic loading
of system/user level SSH config files; this can prevent hard-to-expect errors such as a new user’s ~/.ssh/config
overriding values that are being set in the regular config hierarchy.

To do so, simply set the top level config option load_ssh_configs to False.

Note: Changing this setting does not disable loading of runtime-level config files (e.g. via -F). If a user is explicitly
telling us to load such a file, we assume they know what they’re doing.

3.3 Networking

3.3.1 SSH connection gateways

Background

When connecting to well-secured networks whose internal hosts are not directly reachable from the Internet, a common
pattern is “bouncing”, “gatewaying” or “proxying” SSH connections via an intermediate host (often called a “bastion”,
“gateway” or “jump box”).

Gatewaying requires making an initial/outer SSH connection to the gateway system, then using that connection as a
transport for the “real” connection to the final/internal host.

At a basic level, one could ssh gatewayhost, then ssh internalhost from the resulting shell. This works
for individual long-running sessions, but becomes a burden when it must be done frequently.

There are two gateway solutions available in Fabric, mirroring the functionality of OpenSSH’s client: ProxyJump
style (easier, less overhead, can be nested) or ProxyCommand style (more overhead, can’t be nested, sometimes
more flexible). Both support the usual range of configuration sources: Fabric’s own config framework, SSH config
files, or runtime parameters.

ProxyJump

This style of gateway uses the SSH protocol’s direct-tcpip channel type - a lightweight method of requesting
that the gateway’s sshd open a connection on our behalf to another system. (This has been possible in OpenSSH
server for a long time; support in OpenSSH’s client is new as of 7.3.)

Channel objects (instances of paramiko.channel.Channel) implement Python’s socket API and are thus usable
in place of real operating system sockets for nearly any Python code.

ProxyJump style gatewaying is simple to use: create a new Connection object parameterized for the gateway,
and supply it as the gateway parameter when creating your inner/real Connection:

from fabric import Connection

c = Connection('internalhost', gateway=Connection('gatewayhost'))

As with any other Connection, the gateway connection may be configured with its own username, port number,
and so forth. (This includes gateway itself - they can be chained indefinitely!)

16 Chapter 3. Concepts

http://docs.pyinvoke.org/en/latest/invoke.html#cmdoption-list-format
http://docs.paramiko.org/en/latest/api/channel.html#paramiko.channel.Channel

Fabric, Release

ProxyCommand

The traditional OpenSSH command-line client has long offered a ProxyCommand directive (see man ssh_config),
which pipes the inner connection’s input and output through an arbitrary local subprocess.

Compared to ProxyJump style gateways, this adds overhead (the extra subprocess) and can’t easily be nested. In
trade, it allows for advanced tricks like use of SOCKS proxies, or custom filtering/gatekeeping applications.

ProxyCommand subprocesses are typically another ssh command, such as ssh -W %h:%p gatewayhost; or
(on SSH versions lacking -W) the widely available netcat, via ssh gatewayhost nc %h %p.

Fabric supports ProxyCommand by accepting command string objects in the gateway kwarg of Connection;
this is used to populate a paramiko.proxy.ProxyCommand object at connection time.

Additional concerns

If you’re unsure which of the two approaches to use: use ProxyJump style. It performs better, uses fewer resources
on your local system, and has an easier-to-use API.

Warning: Requesting both types of gateways simultaneously to the same host (i.e. supplying a Connection as
the gateway via kwarg or config, and loading a config file containing ProxyCommand) is considered an error
and will result in an exception.

3.3. Networking 17

http://man.openbsd.org/ssh_config
http://docs.paramiko.org/en/latest/api/proxy.html#paramiko.proxy.ProxyCommand

Fabric, Release

18 Chapter 3. Concepts

CHAPTER 4

The fab CLI tool

Details on the CLI interface to Fabric, how it extends Invoke’s CLI machinery, and examples of shortcuts for executing
tasks across hosts or groups.

4.1 Command-line interface

This page documents the details of Fabric’s command-line interface, fab.

4.1.1 Options & arguments

Note: By default, fab honors all of the same CLI options as Invoke’s ‘inv’ program; only additions and overrides
are listed here!

For example, Fabric implements --prompt-for-passphrase and --prompt-for-login-password be-
cause they are SSH specific, but it inherits a related option – –prompt-for-sudo-password – from Invoke, which handles
sudo autoresponse concerns.

-H, --hosts
Takes a comma-separated string listing hostnames against which tasks should be executed, in serial. See Runtime
specification of host lists.

-i, --identity
Overrides the key_filename value in the connect_kwargs config setting (which is read by
Connection, and eventually makes its way into Paramiko; see the docstring for Connection for details.)

Typically this can be thought of as identical to ssh -i <path>, i.e. supplying a specific, runtime private key
file. Like ssh -i, it builds an iterable of strings and may be given multiple times.

Default: [].

19

http://docs.pyinvoke.org/en/latest/invoke.html#inv
http://docs.pyinvoke.org/en/latest/invoke.html#prompt-for-sudo-password

Fabric, Release

--prompt-for-login-password
Causes Fabric to prompt ‘up front’ for a value to store as the connect_kwargs.password config setting
(used by Paramiko when authenticating via passwords and, in some versions, also used for key passphrases.)
Useful if you do not want to configure such values in on-disk conf files or via shell environment variables.

--prompt-for-passphrase
Causes Fabric to prompt ‘up front’ for a value to store as the connect_kwargs.passphrase config setting
(used by Paramiko to decrypt private key files.) Useful if you do not want to configure such values in on-disk
conf files or via shell environment variables.

-S, --ssh-config
Takes a path to load as a runtime SSH config file. See Loading and using ssh_config files.

-t, --connect-timeout
Takes an integer of seconds after which connection should time out. Supplies the default value for the
timeouts.connect config setting.

4.1.2 Seeking & loading tasks

fab follows all the same rules as Invoke’s collection loading, with the sole exception that the default collection name
sought is fabfile instead of tasks. Thus, whenever Invoke’s documentation mentions tasks or tasks.py,
Fabric substitutes fabfile / fabfile.py.

For example, if your current working directory is /home/myuser/projects/mywebapp, running fab
--list will cause Fabric to look for /home/myuser/projects/mywebapp/fabfile.py (or /home/
myuser/projects/mywebapp/fabfile/__init__.py - Python’s import system treats both the same). If
it’s not found there, /home/myuser/projects/fabfile.py is sought next; and so forth.

4.1.3 Runtime specification of host lists

While advanced use cases may need to take matters into their own hands, you can go reasonably far with the core
--hosts flag, which specifies one or more hosts the given task(s) should execute against.

By default, execution is a serial process: for each task on the command line, run it once for each host given to
--hosts. Imagine tasks that simply print Running <task name> on <host>!:

$ fab --hosts host1,host2,host3 taskA taskB
Running taskA on host1!
Running taskA on host2!
Running taskA on host3!
Running taskB on host1!
Running taskB on host2!
Running taskB on host3!

Note: When --hosts is not given, fab behaves similarly to Invoke’s command-line interface, generating regular
instances of Context instead of Connections.

4.1.4 Executing arbitrary/ad-hoc commands

fab leverages a lesser-known command line convention and may be called in the following manner:

$ fab [options] -- [shell command]

20 Chapter 4. The fab CLI tool

http://docs.pyinvoke.org/en/latest/concepts/loading.html#collection-discovery
http://docs.pyinvoke.org/en/latest/invoke.html#inv
http://docs.pyinvoke.org/en/latest/api/context.html#invoke.context.Context

Fabric, Release

where everything after the -- is turned into a temporary Connection.run call, and is not parsed for fab options.
If you’ve specified a host list via an earlier task or the core CLI flags, this usage will act like a one-line anonymous
task.

For example, let’s say you wanted kernel info for a bunch of systems:

$ fab -H host1,host2,host3 -- uname -a

Such a command is equivalent to the following Fabric library code:

from fabric import Group

Group('host1', 'host2', 'host3').run("uname -a")

Most of the time you will want to just write out the task in your fabfile (anything you use once, you’re likely to use
again) but this feature provides a handy, fast way to dash off an SSH-borne command while leveraging predefined
connection settings.

4.1. Command-line interface 21

Fabric, Release

22 Chapter 4. The fab CLI tool

CHAPTER 5

API

Know what you’re looking for & just need API details? View our auto-generated API documentation:

5.1 config

class fabric.config.Config(*args, **kwargs)
An invoke.config.Config subclass with extra Fabric-related behavior.

This class behaves like invoke.config.Config in every way, with the following exceptions:

• its global_defaults staticmethod has been extended to add/modify some default settings (see its
documentation, below, for details);

• it triggers loading of Fabric-specific env vars (e.g. FABRIC_RUN_HIDE=true instead of
INVOKE_RUN_HIDE=true) and filenames (e.g. /etc/fabric.yaml instead of /etc/invoke.
yaml).

• it extends the API to account for loading ssh_config files (which are stored as additional attributes and
have no direct relation to the regular config data/hierarchy.)

• it adds a new optional constructor, from_v1, which generates configuration data from Fabric 1.

Intended for use with Connection, as using vanilla invoke.config.Config objects would require users
to manually define port, user and so forth.

See also:

Configuration, Loading and using ssh_config files

New in version 2.0.

__init__(*args, **kwargs)
Creates a new Fabric-specific config object.

For most API details, see invoke.config.Config.__init__. Parameters new to this subclass are
listed below.

23

http://docs.pyinvoke.org/en/latest/api/config.html#invoke.config.Config
http://docs.pyinvoke.org/en/latest/api/config.html#invoke.config.Config
http://www.fabfile.org/upgrading.html#from-v1
http://docs.pyinvoke.org/en/latest/api/config.html#invoke.config.Config
http://docs.pyinvoke.org/en/latest/api/config.html#invoke.config.Config.__init__

Fabric, Release

Parameters

• ssh_config – Custom/explicit paramiko.config.SSHConfig object. If given,
prevents loading of any SSH config files. Default: None.

• runtime_ssh_path (str) – Runtime SSH config path to load. Prevents loading of
system/user files if given. Default: None.

• system_ssh_path (str) – Location of the system-level SSH config file. Default:
/etc/ssh/ssh_config.

• user_ssh_path (str) – Location of the user-level SSH config file. Default: ~/.
ssh/config.

• lazy (bool) – Has the same meaning as the parent class’ lazy, but addition-
ally controls whether SSH config file loading is deferred (requires manually call-
ing load_ssh_config sometime.) For example, one may need to wait for user
input before calling set_runtime_ssh_path, which will inform exactly what
load_ssh_config does.

classmethod from_v1(env, **kwargs)
Alternate constructor which uses Fabric 1’s env dict for settings.

All keyword arguments besides env are passed unmolested into the primary constructor, with the ex-
ception of overrides, which is used internally & will end up resembling the data from env with the
user-supplied overrides on top.

Warning: Because your own config overrides will win over data from env, make sure you only set
values you intend to change from your v1 environment!

For details on exactly which env vars are imported and what they become in the new API, please see
Mapping of v1 env vars to modern API members.

Parameters env – An explicit Fabric 1 env dict (technically, any fabric.utils.
_AttributeDict instance should work) to pull configuration from.

New in version 2.4.

static global_defaults()
Default configuration values and behavior toggles.

Fabric only extends this method in order to make minor adjustments and additions to Invoke’s
global_defaults; see its documentation for the base values, such as the config subtrees controlling
behavior of run or how tasks behave.

For Fabric-specific modifications and additions to the Invoke-level defaults, see our own config docs at
Default configuration values.

New in version 2.0.

load_ssh_config()
Load SSH config file(s) from disk.

Also (beforehand) ensures that Invoke-level config re: runtime SSH config file paths, is accounted for.

New in version 2.0.

set_runtime_ssh_path(path)
Configure a runtime-level SSH config file path.

If set, this will cause load_ssh_config to skip system and user files, as OpenSSH does.

24 Chapter 5. API

http://docs.paramiko.org/en/latest/api/config.html#paramiko.config.SSHConfig
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
http://www.fabfile.org/upgrading.html#v1-env-var-imports
http://docs.pyinvoke.org/en/latest/api/config.html#invoke.config.Config.global_defaults

Fabric, Release

New in version 2.0.

5.2 connection

class fabric.connection.Connection(host, user=None, port=None, config=None,
gateway=None, forward_agent=None, con-
nect_timeout=None, connect_kwargs=None, in-
line_ssh_env=None)

A connection to an SSH daemon, with methods for commands and file transfer.

Basics

This class inherits from Invoke’s Context, as it is a context within which commands, tasks etc can oper-
ate. It also encapsulates a Paramiko SSHClient instance, performing useful high level operations with that
SSHClient and Channel instances generated from it.

Note: Many SSH specific options – such as specifying private keys and passphrases, timeouts, disabling SSH
agents, etc – are handled directly by Paramiko and should be specified via the connect_kwargs argument of the
constructor.

Lifecycle

Connection has a basic “create, connect/open, do work, disconnect/close” lifecycle:

• Instantiation imprints the object with its connection parameters (but does not actually initiate the
network connection).

– An alternate constructor exists for users upgrading piecemeal from Fabric 1: from_v1

• Methods like run, get etc automatically trigger a call to open if the connection is not active; users may
of course call open manually if desired.

• It’s best to explicitly close your connections when done using them. This can be accomplished by manually
calling close, or by using the object as a contextmanager:

with Connection('host') as c:
c.run('command')
c.put('file')

Warning: While Fabric (and Paramiko) attempt to register connections for automatic garbage collec-
tion, it’s not currently safe to rely on that feature, as it can lead to end-of-process hangs and similar
behavior.

Note: This class rebinds invoke.context.Context.run to local so both remote and local command
execution can coexist.

Configuration

Most Connection parameters honor Invoke-style configuration as well as any applicable SSH config file di-
rectives. For example, to end up with a connection to admin@myhost, one could:

5.2. connection 25

http://docs.pyinvoke.org/en/latest/api/context.html#invoke.context.Context
http://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient
http://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient
http://docs.paramiko.org/en/latest/api/channel.html#paramiko.channel.Channel
http://www.fabfile.org/upgrading.html#from-v1
http://docs.pyinvoke.org/en/latest/api/context.html#invoke.context.Context.run

Fabric, Release

• Use any built-in config mechanism, such as /etc/fabric.yml, ~/.fabric.json, collection-
driven configuration, env vars, etc, stating user: admin (or {"user": "admin"}, depending
on config format.) Then Connection('myhost') would implicitly have a user of admin.

• Use an SSH config file containing User admin within any applicable Host header (Host myhost,
Host *, etc.) Again, Connection('myhost') will default to an admin user.

• Leverage host-parameter shorthand (described in Config.__init__), i.e.
Connection('admin@myhost').

• Give the parameter directly: Connection('myhost', user='admin').

The same applies to agent forwarding, gateways, and so forth.

New in version 2.0.

__init__(host, user=None, port=None, config=None, gateway=None, forward_agent=None, con-
nect_timeout=None, connect_kwargs=None, inline_ssh_env=None)

Set up a new object representing a server connection.

Parameters

• host (str) – the hostname (or IP address) of this connection.

May include shorthand for the user and/or port parameters, of the form user@host,
host:port, or user@host:port.

Note: Due to ambiguity, IPv6 host addresses are incompatible with the host:port
shorthand (though user@host will still work OK). In other words, the presence of >1
: character will prevent any attempt to derive a shorthand port number; use the explicit
port parameter instead.

Note: If host matches a Host clause in loaded SSH config data, and that Host
clause contains a Hostname directive, the resulting Connection object will behave
as if host is equal to that Hostname value.

In all cases, the original value of host is preserved as the original_host attribute.

Thus, given SSH config like so:

Host myalias
Hostname realhostname

a call like Connection(host='myalias') will result in an object whose host
attribute is realhostname, and whose original_host attribute is myalias.

• user (str) – the login user for the remote connection. Defaults to config.user.

• port (int) – the remote port. Defaults to config.port.

• config – configuration settings to use when executing methods on this Connection
(e.g. default SSH port and so forth).

Should be a Config or an invoke.config.Config (which will be turned into a
Config).

Default is an anonymous Config object.

• gateway – An object to use as a proxy or gateway for this connection.

26 Chapter 5. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
http://docs.pyinvoke.org/en/latest/api/config.html#invoke.config.Config

Fabric, Release

This parameter accepts one of the following:

– another Connection (for a ProxyJump style gateway);

– a shell command string (for a ProxyCommand style style gateway).

Default: None, meaning no gatewaying will occur (unless otherwise configured; if one
wants to override a configured gateway at runtime, specify gateway=False.)

See also:

SSH connection gateways

• forward_agent (bool) – Whether to enable SSH agent forwarding.

Default: config.forward_agent.

• connect_timeout (int) – Connection timeout, in seconds.

Default: config.timeouts.connect.

Parameters

• connect_kwargs (dict) – Keyword arguments handed verbatim to SSHClient.
connect (when open is called).

Connection tries not to grow additional settings/kwargs of its own unless it is adding
value of some kind; thus, connect_kwargs is currently the right place to hand in
paramiko connection parameters such as pkey or key_filename. For example:

c = Connection(
host="hostname",
user="admin",
connect_kwargs={

"key_filename": "/home/myuser/.ssh/private.key",
},

)

Default: config.connect_kwargs.

• inline_ssh_env (bool) – Whether to send environment variables “inline” as prefixes
in front of command strings (export VARNAME=value && mycommand here),
instead of trying to submit them through the SSH protocol itself (which is the default
behavior). This is necessary if the remote server has a restricted AcceptEnv setting
(which is the common default).

The default value is the value of the inline_ssh_env configuration value (which itself
defaults to False).

Warning: This functionality does not currently perform any shell escaping on your
behalf! Be careful when using nontrivial values, and note that you can put in your own
quoting, backslashing etc if desired.

Consider using a different approach (such as actual remote shell scripts) if you run into
too many issues here.

Note: When serializing into prefixed FOO=bar format, we apply the builtin sorted

5.2. connection 27

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
http://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient.connect
http://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient.connect
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#sorted

Fabric, Release

function to the env dictionary’s keys, to remove what would otherwise be ambigu-
ous/arbitrary ordering.

Note: This setting has no bearing on local shell commands; it only affects remote com-
mands, and thus, methods like run and sudo.

Raises ValueError – if user or port values are given via both host shorthand and their own
arguments. (We refuse the temptation to guess).

Changed in version 2.3: Added the inline_ssh_env parameter.

close()
Terminate the network connection to the remote end, if open.

If no connection is open, this method does nothing.

New in version 2.0.

forward_local(local_port, remote_port=None, remote_host=’localhost’, local_host=’localhost’)
Open a tunnel connecting local_port to the server’s environment.

For example, say you want to connect to a remote PostgreSQL database which is locked down and only
accessible via the system it’s running on. You have SSH access to this server, so you can temporarily make
port 5432 on your local system act like port 5432 on the server:

import psycopg2
from fabric import Connection

with Connection('my-db-server').forward_local(5432):
db = psycopg2.connect(

host='localhost', port=5432, database='mydb'
)
Do things with 'db' here

This method is analogous to using the -L option of OpenSSH’s ssh program.

Parameters

• local_port (int) – The local port number on which to listen.

• remote_port (int) – The remote port number. Defaults to the same value as
local_port.

• local_host (str) – The local hostname/interface on which to listen. Default:
localhost.

• remote_host (str) – The remote hostname serving the forwarded remote port. De-
fault: localhost (i.e., the host this Connection is connected to.)

Returns Nothing; this method is only useful as a context manager affecting local operating
system state.

New in version 2.0.

forward_remote(remote_port, local_port=None, remote_host=’127.0.0.1’, local_host=’localhost’)
Open a tunnel connecting remote_port to the local environment.

For example, say you’re running a daemon in development mode on your workstation at port 8080, and
want to funnel traffic to it from a production or staging environment.

28 Chapter 5. API

https://docs.python.org/3/library/exceptions.html#ValueError
http://zen-of-python.info/in-the-face-of-ambiguity-refuse-the-temptation-to-guess.html#12
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Fabric, Release

In most situations this isn’t possible as your office/home network probably blocks inbound traffic. But you
have SSH access to this server, so you can temporarily make port 8080 on that server act like port 8080 on
your workstation:

from fabric import Connection

c = Connection('my-remote-server')
with c.forward_remote(8080):

c.run("remote-data-writer --port 8080")
Assuming remote-data-writer runs until interrupted, this will
stay open until you Ctrl-C...

This method is analogous to using the -R option of OpenSSH’s ssh program.

Parameters

• remote_port (int) – The remote port number on which to listen.

• local_port (int) – The local port number. Defaults to the same value as
remote_port.

• local_host (str) – The local hostname/interface the forwarded connection talks to.
Default: localhost.

• remote_host (str) – The remote interface address to listen on when forwarding con-
nections. Default: 127.0.0.1 (i.e. only listen on the remote localhost).

Returns Nothing; this method is only useful as a context manager affecting local operating
system state.

New in version 2.0.

classmethod from_v1(env, **kwargs)
Alternate constructor which uses Fabric 1’s env dict for settings.

All keyword arguments besides env are passed unmolested into the primary constructor.

Warning: Because your own config overrides will win over data from env, make sure you only set
values you intend to change from your v1 environment!

For details on exactly which env vars are imported and what they become in the new API, please see
Mapping of v1 env vars to modern API members.

Parameters env – An explicit Fabric 1 env dict (technically, any fabric.utils.
_AttributeDict instance should work) to pull configuration from.

New in version 2.4.

get(*args, **kwargs)
Get a remote file to the local filesystem or file-like object.

Simply a wrapper for Transfer.get. Please see its documentation for all details.

New in version 2.0.

is_connected
Whether or not this connection is actually open.

New in version 2.0.

local(*args, **kwargs)
Execute a shell command on the local system.

5.2. connection 29

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://www.fabfile.org/upgrading.html#v1-env-var-imports

Fabric, Release

This method is effectively a wrapper of invoke.run; see its docs for details and call signature.

New in version 2.0.

open()
Initiate an SSH connection to the host/port this object is bound to.

This may include activating the configured gateway connection, if one is set.

Also saves a handle to the now-set Transport object for easier access.

Various connect-time settings (and/or their corresponding SSH config options) are utilized here in the call
to SSHClient.connect. (For details, see the configuration docs.)

New in version 2.0.

open_gateway()
Obtain a socket-like object from gateway.

Returns A direct-tcpip paramiko.channel.Channel, if gateway was a
Connection; or a ProxyCommand, if gateway was a string.

New in version 2.0.

put(*args, **kwargs)
Put a local file (or file-like object) to the remote filesystem.

Simply a wrapper for Transfer.put. Please see its documentation for all details.

New in version 2.0.

run(command, **kwargs)
Execute a shell command on the remote end of this connection.

This method wraps an SSH-capable implementation of invoke.runners.Runner.run; see its doc-
umentation for details.

Warning: There are a few spots where Fabric departs from Invoke’s default settings/behaviors; they
are documented under Config.global_defaults.

New in version 2.0.

sftp()
Return a SFTPClient object.

If called more than one time, memoizes the first result; thus, any given Connection instance will only
ever have a single SFTP client, and state (such as that managed by chdir) will be preserved.

New in version 2.0.

sudo(command, **kwargs)
Execute a shell command, via sudo, on the remote end.

This method is identical to invoke.context.Context.sudo in every way, except in that – like run
– it honors per-host/per-connection configuration overrides in addition to the generic/global ones. Thus,
for example, per-host sudo passwords may be configured.

New in version 2.0.

30 Chapter 5. API

http://docs.pyinvoke.org/en/latest/api/__init__.html#invoke.run
http://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient.connect
http://docs.paramiko.org/en/latest/api/channel.html#paramiko.channel.Channel
http://docs.paramiko.org/en/latest/api/proxy.html#paramiko.proxy.ProxyCommand
http://docs.pyinvoke.org/en/latest/api/runners.html#invoke.runners.Runner.run
http://docs.paramiko.org/en/latest/api/sftp.html#paramiko.sftp_client.SFTPClient
http://docs.paramiko.org/en/latest/api/sftp.html#paramiko.sftp_client.SFTPClient.chdir
http://docs.pyinvoke.org/en/latest/api/context.html#invoke.context.Context.sudo

Fabric, Release

5.3 exceptions

exception fabric.exceptions.GroupException(result)
Lightweight exception wrapper for GroupResult when one contains errors.

New in version 2.0.

__weakref__
list of weak references to the object (if defined)

exception fabric.exceptions.InvalidV1Env
Raised when attempting to import a Fabric 1 env which is missing data.

__weakref__
list of weak references to the object (if defined)

5.4 executor

class fabric.executor.Executor(collection, config=None, core=None)
Executor subclass which understands Fabric concepts.

Designed to work in tandem with Fabric’s @task/Task, and is capable of acting on information stored on the
resulting objects – such as default host lists.

This class is written to be backwards compatible with vanilla Invoke-level tasks, which it simply delegates to its
superclass.

Please see the parent class’ documentation for details on most public API members and object lifecycle.

normalize_hosts(hosts)
Normalize mixed host-strings-or-kwarg-dicts into kwarg dicts only.

In other words, transforms data taken from the CLI (–hosts, always strings) or decorator arguments (may
be strings or kwarg dicts) into kwargs suitable for creating Connection instances.

Subclasses may wish to override or extend this to perform, for example, database or custom config file
lookups (vs this default behavior, which is to simply assume that strings are ‘host’ kwargs).

Parameters hosts – Potentially heterogenous list of host connection values, as per the hosts
param to task.

Returns Homogenous list of Connection init kwarg dicts.

parameterize(call, connection_init_kwargs)
Parameterize a Call with its Context set to a per-host Connection.

Parameters

• call – The generic Call being parameterized.

• connection_init_kwargs – The dict of Connection init params/kwargs to attach
to the resulting ConnectionCall.

Returns ConnectionCall.

5.5 group

class fabric.group.Group(*hosts, **kwargs)
A collection of Connection objects whose API operates on its contents.

5.3. exceptions 31

http://docs.pyinvoke.org/en/latest/api/executor.html#invoke.executor.Executor
http://docs.pyinvoke.org/en/latest/api/executor.html#invoke.executor.Executor

Fabric, Release

Warning: This is a partially abstract class; you need to use one of its concrete subclasses (such as
SerialGroup or ThreadingGroup) or you’ll get NotImplementedError on most of the methods.

Most methods in this class mirror those of Connection, taking the same arguments; however their return
values and exception-raising behavior differs:

• Return values are dict-like objects (GroupResult) mapping Connection objects to the return value
for the respective connections: Group.run returns a map of Connection to runners.Result,
Group.get returns a map of Connection to transfer.Result, etc.

• If any connections encountered exceptions, a GroupException is raised, which is a thin wrapper around
what would otherwise have been the GroupResult returned; within that wrapped GroupResult, the
excepting connections map to the exception that was raised, in place of a Result (as no Result was
obtained.) Any non-excepting connections will have a Result value, as normal.

For example, when no exceptions occur, a session might look like this:

>>> group = SerialGroup('host1', 'host2')
>>> group.run("this is fine")
{

<Connection host='host1'>: <Result cmd='this is fine' exited=0>,
<Connection host='host2'>: <Result cmd='this is fine' exited=0>,

}

With exceptions (anywhere from 1 to “all of them”), it looks like so; note the different exception classes, e.g.
UnexpectedExit for a completed session whose command exited poorly, versus socket.gaierror for
a host that had DNS problems:

>>> group = SerialGroup('host1', 'host2', 'notahost')
>>> group.run("will it blend?")
{

<Connection host='host1'>: <Result cmd='will it blend?' exited=0>,
<Connection host='host2'>: <UnexpectedExit: cmd='...' exited=1>,
<Connection host='notahost'>: gaierror(...),

}

As with Connection, Group objects may be used as context managers, which will automatically close the
object on block exit.

New in version 2.0.

Changed in version 2.4: Added context manager behavior.

__init__(*hosts, **kwargs)
Create a group of connections from one or more shorthand host strings.

See Connection for details on the format of these strings - they will be used as the first positional
argument of Connection constructors.

Any keyword arguments given will be forwarded directly to those Connection constructors as well. For
example, to get a serially executing group object that connects to admin@host1, admin@host2 and
admin@host3, and forwards your SSH agent too:

group = SerialGroup(
"host1", "host2", "host3", user="admin", forward_agent=True,

)

Changed in version 2.3: Added **kwargs (was previously only *hosts).

32 Chapter 5. API

http://docs.pyinvoke.org/en/latest/api/exceptions.html#invoke.exceptions.UnexpectedExit
https://docs.python.org/3/library/socket.html#socket.gaierror

Fabric, Release

__weakref__
list of weak references to the object (if defined)

close()
Executes Connection.close on all member Connections.

New in version 2.4.

classmethod from_connections(connections)
Alternate constructor accepting Connection objects.

New in version 2.0.

get(*args, **kwargs)
Executes Connection.get on all member Connections.

Returns a GroupResult.

New in version 2.0.

run(*args, **kwargs)
Executes Connection.run on all member Connections.

Returns a GroupResult.

New in version 2.0.

class fabric.group.GroupResult(*args, **kwargs)
Collection of results and/or exceptions arising from Group methods.

Acts like a dict, but adds a couple convenience methods, to wit:

• Keys are the individual Connection objects from within the Group.

• Values are either return values / results from the called method (e.g. runners.Result objects), or an
exception object, if one prevented the method from returning.

• Subclasses dict, so has all dict methods.

• Has succeeded and failed attributes containing sub-dicts limited to just those key/value pairs that
succeeded or encountered exceptions, respectively.

– Of note, these attributes allow high level logic, e.g. if mygroup.run('command').failed
and so forth.

New in version 2.0.

__weakref__
list of weak references to the object (if defined)

failed
A sub-dict containing only failed results.

New in version 2.0.

succeeded
A sub-dict containing only successful results.

New in version 2.0.

class fabric.group.SerialGroup(*hosts, **kwargs)
Subclass of Group which executes in simple, serial fashion.

New in version 2.0.

5.5. group 33

https://docs.python.org/3/library/stdtypes.html#dict

Fabric, Release

class fabric.group.ThreadingGroup(*hosts, **kwargs)
Subclass of Group which uses threading to execute concurrently.

New in version 2.0.

5.6 runners

class fabric.runners.Remote(*args, **kwargs)
Run a shell command over an SSH connection.

This class subclasses invoke.runners.Runner; please see its documentation for most public API details.

Note: Remote’s __init__ method expects a Connection (or subclass) instance for its context argu-
ment.

New in version 2.0.

__init__(*args, **kwargs)
Thin wrapper for superclass’ __init__; please see it for details.

Additional keyword arguments defined here are listed below.

Parameters inline_env (bool) – Whether to ‘inline’ shell env vars as prefixed parame-
ters, instead of trying to submit them via Channel.update_environment. Default::
False.

Changed in version 2.3: Added the inline_env parameter.

class fabric.runners.Result(**kwargs)
An invoke.runners.Result exposing which Connection was run against.

Exposes all attributes from its superclass, then adds a .connection, which is simply a reference to the
Connection whose method yielded this result.

New in version 2.0.

5.7 tasks

class fabric.tasks.ConnectionCall(*args, **kwargs)
Subclass of invoke.tasks.Call that generates Connections.

__init__(*args, **kwargs)
Creates a new ConnectionCall.

Performs minor extensions to Call – see its docstring for most details. Only specific-to-subclass params
are documented here.

Parameters init_kwargs (dict) – Keyword arguments used to create a new Connection
when the wrapped task is executed. Default: None.

class fabric.tasks.Task(*args, **kwargs)
Extends invoke.tasks.Task with knowledge of target hosts and similar.

As invoke.tasks.Task relegates documentation responsibility to its @task expression, so we relegate
most details to our version of @task - please see its docs for details.

New in version 2.1.

34 Chapter 5. API

http://docs.pyinvoke.org/en/latest/api/runners.html#invoke.runners.Runner
https://docs.python.org/3/library/functions.html#bool
http://docs.pyinvoke.org/en/latest/api/runners.html#invoke.runners.Result
http://docs.pyinvoke.org/en/latest/api/tasks.html#invoke.tasks.Call
http://docs.pyinvoke.org/en/latest/api/tasks.html#invoke.tasks.Call
https://docs.python.org/3/library/stdtypes.html#dict
http://docs.pyinvoke.org/en/latest/api/tasks.html#invoke.tasks.Task
http://docs.pyinvoke.org/en/latest/api/tasks.html#invoke.tasks.Task
http://docs.pyinvoke.org/en/latest/api/tasks.html#invoke.tasks.task

Fabric, Release

fabric.tasks.task(*args, **kwargs)
Wraps/extends Invoke’s @task with extra kwargs.

See the Invoke-level API docs for most details; this Fabric-specific implementation adds the follow-
ing additional keyword arguments:

Parameters hosts – An iterable of host-connection specifiers appropriate for eventually instanti-
ating a Connection. The existence of this argument will trigger automatic parameterization
of the task when invoked from the CLI, similar to the behavior of --hosts.

Note: This parameterization is “lower-level” than that driven by --hosts: if a task decorated
with this parameter is executed in a session where --hosts was given, the CLI-driven value
will win out.

List members may be one of:

• A string appropriate for being the first positional argument to Connection - see its docs
for details, but these are typically shorthand-only convenience strings like hostname.
example.com or user@host:port.

• A dictionary appropriate for use as keyword arguments when instantiating a Connection.
Useful for values that don’t mesh well with simple strings (e.g. statically defined IPv6
addresses) or to bake in more complex info (eg connect_timeout, connect_kwargs
params like auth info, etc).

These two value types may be mixed together in the same list, though we recommend that you
keep things homogenous when possible, to avoid confusion when debugging.

Note: No automatic deduplication of values is performed; if you pass in multiple references
to the same effective target host, the wrapped task will execute on that host multiple times
(including making separate connections).

New in version 2.1.

5.8 testing

The fabric.testing subpackage contains a handful of test helper modules:

• fabric.testing.base which only depends on things like mock and is appropriate in just about any test
paradigm;

• fabric.testing.fixtures, containing pytest fixtures and thus only of interest for users of pytest.

All are documented below. Please note the module-level documentation which contains install instructions!

5.8.1 testing.base

This module contains helpers/fixtures to assist in testing Fabric-driven code.

It is not intended for production use, and pulls in some test-oriented dependencies such as mock. You can install an
‘extra’ variant of Fabric to get these dependencies if you aren’t already using them for your own testing purposes: pip
install fabric[testing].

5.8. testing 35

http://docs.pyinvoke.org/en/latest/api/tasks.html#invoke.tasks.task
http://docs.pyinvoke.org/en/latest/api/tasks.html#invoke.tasks.task
https://pypi.org/project/mock/

Fabric, Release

Note: If you’re using pytest for your test suite, you may be interested in grabbing fabric[pytest] instead, which
encompasses the dependencies of both this module and the fabric.testing.fixtures module, which contains
pytest fixtures.

New in version 2.1.

class fabric.testing.base.Command(cmd=None, out=b”, err=b”, in_=None, exit=0, waits=0)
Data record specifying params of a command execution to mock/expect.

Parameters

• cmd (str) – Command string to expect. If not given, no expectations about the command
executed will be set up. Default: None.

• out (bytes) – Data yielded as remote stdout. Default: b"".

• err (bytes) – Data yielded as remote stderr. Default: b"".

• exit (int) – Remote exit code. Default: 0.

• waits (int) – Number of calls to the channel’s exit_status_ready that should re-
turn False before it then returns True. Default: 0 (exit_status_ready will return
True immediately).

New in version 2.1.

__weakref__
list of weak references to the object (if defined)

class fabric.testing.base.MockChannel(*args, **kwargs)
Mock subclass that tracks state for its recv(_stderr)? methods.

Turns out abusing function closures inside MockRemote to track this state only worked for 1 command per
session!

New in version 2.1.

class fabric.testing.base.MockRemote
Class representing mocked remote state.

By default this class is set up for start/stop style patching as opposed to the more common context-manager or
decorator approach; this is so it can be used in situations requiring setup/teardown semantics.

Defaults to setting up a single anonymous Session, so it can be used as a “request & forget” pytest fixture.
Users requiring detailed remote session expectations can call methods like expect, which wipe that anony-
mous Session & set up a new one instead.

New in version 2.1.

__weakref__
list of weak references to the object (if defined)

expect(*args, **kwargs)
Convenience method for creating & ‘expect’ing a single Session.

Returns the single MockChannel yielded by that Session.

New in version 2.1.

expect_sessions(*sessions)
Sets the mocked remote environment to expect the given sessions.

Returns a list of MockChannel objects, one per input Session.

36 Chapter 5. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Fabric, Release

New in version 2.1.

sanity()
Run post-execution sanity checks (usually ‘was X called’ tests.)

New in version 2.1.

start()
Start patching SSHClient with the stored sessions, returning channels.

New in version 2.1.

stop()
Stop patching SSHClient.

New in version 2.1.

class fabric.testing.base.MockSFTP(autostart=True)
Class managing mocked SFTP remote state.

Used in start/stop fashion in eg doctests; wrapped in the SFTP fixtures in conftest.py for main use.

New in version 2.1.

__weakref__
list of weak references to the object (if defined)

class fabric.testing.base.Session(host=None, user=None, port=None, commands=None,
cmd=None, out=None, in_=None, err=None, exit=None,
waits=None)

A mock remote session of a single connection and 1 or more command execs.

Allows quick configuration of expected remote state, and also helps generate the necessary test mocks used by
MockRemote itself. Only useful when handed into MockRemote.

The parameters cmd, out, err, exit and waits are all shorthand for the same constructor arguments for a
single anonymous Command; see Command for details.

To give fully explicit Command objects, use the commands parameter.

Parameters

• user (str) –

• host (str) –

• port (int) – Sets up expectations that a connection will be generated to the given user,
host and/or port. If None (default), no expectations are generated / any value is accepted.

• commands – Iterable of Command objects, used when mocking nontrivial sessions involv-
ing >1 command execution per host. Default: None.

Note: Giving cmd, out etc alongside explicit commands is not allowed and will result in
an error.

New in version 2.1.

__weakref__
list of weak references to the object (if defined)

generate_mocks()
Mocks SSHClient and Channel.

5.8. testing 37

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
http://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient
http://docs.paramiko.org/en/latest/api/channel.html#paramiko.channel.Channel

Fabric, Release

Specifically, the client will expect itself to be connected to self.host (if given), the channels will
be associated with the client’s Transport, and the channels will expect/provide command-execution
behavior as specified on the Command objects supplied to this Session.

The client is then attached as self.client and the channels as self.channels.

Returns None - this is mostly a “deferred setup” method and callers will just reference the
above attributes (and call more methods) as needed.

New in version 2.1.

5.8.2 testing.fixtures

pytest fixtures for easy use of Fabric test helpers.

To get Fabric plus this module’s dependencies (as well as those of the main fabric.testing.basemodule which
these fixtures wrap), pip install fabric[pytest].

The simplest way to get these fixtures loaded into your test suite so Pytest notices them is to import them into a
conftest.py (docs). For example, if you intend to use the remote and client fixtures:

from fabric.testing.fixtures import client, remote

New in version 2.1.

fabric.testing.fixtures.client()
Mocks SSHClient for testing calls to connect().

Yields a mocked SSHClient instance.

This fixture updates get_transport to return a mock that appears active on first check, then inactive after,
matching most tests’ needs by default:

• Connection instantiates, with a None .transport.

• Calls to .open() test .is_connected, which returns False when .transport is falsey, and so
the first open will call SSHClient.connect regardless.

• .open() then sets .transport to SSHClient.get_transport(), so Connection.
transport is effectively client.get_transport.return_value.

• Subsequent activity will want to think the mocked SSHClient is “connected”, meaning we want the mocked
transport’s .active to be True.

• This includes Connection.close, which short-circuits if .is_connected; having a statically
True active flag means a full open -> close cycle will run without error. (Only tests that double-close
or double-open should have issues here.)

End result is that:

• .is_connected behaves False after instantiation and before .open, then True after .open

• .close will work normally on 1st call

• .close will behave “incorrectly” on subsequent calls (since it’ll think connection is still live.) Tests that
check the idempotency of .close will need to tweak their mock mid-test.

For ‘full’ fake remote session interaction (i.e. stdout/err reading/writing, channel opens, etc) see remote.

New in version 2.1.

38 Chapter 5. API

http://docs.paramiko.org/en/latest/api/transport.html#paramiko.transport.Transport
https://pytest.org
http://pytest.readthedocs.io/en/latest/fixture.html#conftest-py-sharing-fixture-functions
http://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient
http://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient.get_transport

Fabric, Release

fabric.testing.fixtures.connection()
Yields a Connection object with mocked methods.

Specifically:

• the hostname is set to "host" and the username to "user";

• the primary API members (Connection.run, Connection.local, etc) are replaced with mock.
Mock instances;

• the run.in_stream config option is set to False to avoid attempts to read from stdin (which typically
plays poorly with pytest and other capturing test runners);

New in version 2.1.

fabric.testing.fixtures.cxn()
Yields a Connection object with mocked methods.

Specifically:

• the hostname is set to "host" and the username to "user";

• the primary API members (Connection.run, Connection.local, etc) are replaced with mock.
Mock instances;

• the run.in_stream config option is set to False to avoid attempts to read from stdin (which typically
plays poorly with pytest and other capturing test runners);

New in version 2.1.

fabric.testing.fixtures.remote()
Fixture allowing setup of a mocked remote session & access to sub-mocks.

Yields a MockRemote object (which may need to be updated via MockRemote.expect, MockRemote.
expect_sessions, etc; otherwise a default session will be used) & calls MockRemote.sanity and
MockRemote.stop on teardown.

New in version 2.1.

fabric.testing.fixtures.sftp()
Fixture allowing setup of a mocked remote SFTP session.

Yields a 3-tuple of: Transfer() object, SFTPClient object, and mocked OS module.

For many/most tests which only want the Transfer and/or SFTPClient objects, see sftp_objs and transfer
which wrap this fixture.

New in version 2.1.

fabric.testing.fixtures.sftp_objs(sftp)
Wrapper for sftp which only yields the Transfer and SFTPClient.

New in version 2.1.

fabric.testing.fixtures.transfer(sftp)
Wrapper for sftp which only yields the Transfer object.

New in version 2.1.

5.9 transfer

File transfer via SFTP and/or SCP.

5.9. transfer 39

Fabric, Release

class fabric.transfer.Result(local, orig_local, remote, orig_remote, connection)
A container for information about the result of a file transfer.

See individual attribute/method documentation below for details.

Note: Unlike similar classes such as invoke.runners.Result or fabric.runners.Result (which
have a concept of “warn and return anyways on failure”) this class has no useful truthiness behavior. If a file
transfer fails, some exception will be raised, either an OSError or an error from within Paramiko.

New in version 2.0.

__weakref__
list of weak references to the object (if defined)

class fabric.transfer.Transfer(connection)
Connection-wrapping class responsible for managing file upload/download.

New in version 2.0.

__weakref__
list of weak references to the object (if defined)

get(remote, local=None, preserve_mode=True)
Download a file from the current connection to the local filesystem.

Parameters

• remote (str) – Remote file to download.

May be absolute, or relative to the remote working directory.

Note: Most SFTP servers set the remote working directory to the connecting user’s home
directory, and (unlike most shells) do not expand tildes (~).

For example, instead of saying get("~/tmp/archive.tgz"), say get("tmp/
archive.tgz").

• local – Local path to store downloaded file in, or a file-like object.

If None or another ‘falsey’/empty value is given (the default), the remote file is down-
loaded to the current working directory (as seen by os.getcwd) using its remote file-
name.

If a string is given, it should be a path to a local directory or file and is subject to similar
behavior as that seen by common Unix utilities or OpenSSH’s sftp or scp tools.

For example, if the local path is a directory, the remote path’s base filename will be
added onto it (so get('foo/bar/file.txt', '/tmp/') would result in creation
or overwriting of /tmp/file.txt).

Note: When dealing with nonexistent file paths, normal Python file handling concerns
come into play - for example, a local path containing non-leaf directories which do not
exist, will typically result in an OSError.

If a file-like object is given, the contents of the remote file are simply written into it.

• preserve_mode (bool) – Whether to os.chmod the local file so it matches the re-
mote file’s mode (default: True).

40 Chapter 5. API

http://docs.pyinvoke.org/en/latest/api/runners.html#invoke.runners.Result
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.getcwd
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/os.html#os.chmod

Fabric, Release

Returns A Result object.

New in version 2.0.

put(local, remote=None, preserve_mode=True)
Upload a file from the local filesystem to the current connection.

Parameters

• local – Local path of file to upload, or a file-like object.

If a string is given, it should be a path to a local (regular) file (not a directory).

Note: When dealing with nonexistent file paths, normal Python file handling concerns
come into play - for example, trying to upload a nonexistent local path will typically
result in an OSError.

If a file-like object is given, its contents are written to the remote file path.

• remote (str) – Remote path to which the local file will be written.

Note: Most SFTP servers set the remote working directory to the connecting user’s home
directory, and (unlike most shells) do not expand tildes (~).

For example, instead of saying put("archive.tgz", "~/tmp/"), say
put("archive.tgz", "tmp/").

In addition, this means that ‘falsey’/empty values (such as the default value, None) are
allowed and result in uploading to the remote home directory.

Note: When local is a file-like object, remote is required and must refer to a valid
file path (not a directory).

• preserve_mode (bool) – Whether to chmod the remote file so it matches the local
file’s mode (default: True).

Returns A Result object.

New in version 2.0.

5.10 tunnels

Tunnel and connection forwarding internals.

If you’re looking for simple, end-user-focused connection forwarding, please see Connection, e.g. Connection.
forward_local.

class fabric.tunnels.Tunnel(channel, sock, finished)
Bidirectionally forward data between an SSH channel and local socket.

New in version 2.0.

read_and_write(reader, writer, chunk_size)
Read chunk_size from reader, writing result to writer.

Returns None if successful, or True if the read was empty.

5.10. tunnels 41

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Fabric, Release

New in version 2.0.

class fabric.tunnels.TunnelManager(local_host, local_port, remote_host, remote_port, trans-
port, finished)

Thread subclass for tunnelling connections over SSH between two endpoints.

Specifically, one instance of this class is sufficient to sit around forwarding any number of individual connections
made to one end of the tunnel or the other. If you need to forward connections between more than one set of
ports, you’ll end up instantiating multiple TunnelManagers.

Wraps a Transport, which should already be connected to the remote server.

New in version 2.0.

5.11 util

fabric.util.get_local_user()
Return the local executing username, or None if one can’t be found.

New in version 2.0.

42 Chapter 5. API

http://docs.paramiko.org/en/latest/api/transport.html#paramiko.transport.Transport

Python Module Index

f
fabric.config, 23
fabric.connection, 25
fabric.exceptions, 31
fabric.executor, 31
fabric.group, 31
fabric.runners, 34
fabric.tasks, 34
fabric.testing.base, 35
fabric.testing.fixtures, 38
fabric.transfer, 39
fabric.tunnels, 41
fabric.util, 42

43

Fabric, Release

44 Python Module Index

Index

Symbols
–prompt-for-login-password

command line option, 19
–prompt-for-passphrase

command line option, 20
-H, –hosts

command line option, 19
-S, –ssh-config

command line option, 20
-i, –identity

command line option, 19
-t, –connect-timeout

command line option, 20
__init__() (fabric.config.Config method), 23
__init__() (fabric.connection.Connection method), 26
__init__() (fabric.group.Group method), 32
__init__() (fabric.runners.Remote method), 34
__init__() (fabric.tasks.ConnectionCall method), 34
__weakref__ (fabric.exceptions.GroupException at-

tribute), 31
__weakref__ (fabric.exceptions.InvalidV1Env attribute),

31
__weakref__ (fabric.group.Group attribute), 32
__weakref__ (fabric.group.GroupResult attribute), 33
__weakref__ (fabric.testing.base.Command attribute), 36
__weakref__ (fabric.testing.base.MockRemote attribute),

36
__weakref__ (fabric.testing.base.MockSFTP attribute),

37
__weakref__ (fabric.testing.base.Session attribute), 37
__weakref__ (fabric.transfer.Result attribute), 40
__weakref__ (fabric.transfer.Transfer attribute), 40

C
client() (in module fabric.testing.fixtures), 38
close() (fabric.connection.Connection method), 28
close() (fabric.group.Group method), 33
Command (class in fabric.testing.base), 36
command line option

–prompt-for-login-password, 19
–prompt-for-passphrase, 20
-H, –hosts, 19
-S, –ssh-config, 20
-i, –identity, 19
-t, –connect-timeout, 20

Config (class in fabric.config), 23
Connection (class in fabric.connection), 25
connection() (in module fabric.testing.fixtures), 38
ConnectionCall (class in fabric.tasks), 34
cxn() (in module fabric.testing.fixtures), 39

E
Executor (class in fabric.executor), 31
expect() (fabric.testing.base.MockRemote method), 36
expect_sessions() (fabric.testing.base.MockRemote

method), 36

F
fabric.config (module), 23
fabric.connection (module), 25
fabric.exceptions (module), 31
fabric.executor (module), 31
fabric.group (module), 31
fabric.runners (module), 34
fabric.tasks (module), 34
fabric.testing.base (module), 35
fabric.testing.fixtures (module), 38
fabric.transfer (module), 39
fabric.tunnels (module), 41
fabric.util (module), 42
failed (fabric.group.GroupResult attribute), 33
forward_local() (fabric.connection.Connection method),

28
forward_remote() (fabric.connection.Connection

method), 28
from_connections() (fabric.group.Group class method),

33
from_v1() (fabric.config.Config class method), 24

45

Fabric, Release

from_v1() (fabric.connection.Connection class method),
29

G
generate_mocks() (fabric.testing.base.Session method),

37
get() (fabric.connection.Connection method), 29
get() (fabric.group.Group method), 33
get() (fabric.transfer.Transfer method), 40
get_local_user() (in module fabric.util), 42
global_defaults() (fabric.config.Config static method), 24
Group (class in fabric.group), 31
GroupException, 31
GroupResult (class in fabric.group), 33

I
InvalidV1Env, 31
is_connected (fabric.connection.Connection attribute), 29

L
load_ssh_config() (fabric.config.Config method), 24
local() (fabric.connection.Connection method), 29

M
MockChannel (class in fabric.testing.base), 36
MockRemote (class in fabric.testing.base), 36
MockSFTP (class in fabric.testing.base), 37

N
normalize_hosts() (fabric.executor.Executor method), 31

O
open() (fabric.connection.Connection method), 30
open_gateway() (fabric.connection.Connection method),

30

P
parameterize() (fabric.executor.Executor method), 31
put() (fabric.connection.Connection method), 30
put() (fabric.transfer.Transfer method), 41

R
read_and_write() (fabric.tunnels.Tunnel method), 41
Remote (class in fabric.runners), 34
remote() (in module fabric.testing.fixtures), 39
Result (class in fabric.runners), 34
Result (class in fabric.transfer), 39
run() (fabric.connection.Connection method), 30
run() (fabric.group.Group method), 33

S
sanity() (fabric.testing.base.MockRemote method), 37
SerialGroup (class in fabric.group), 33

Session (class in fabric.testing.base), 37
set_runtime_ssh_path() (fabric.config.Config method), 24
sftp() (fabric.connection.Connection method), 30
sftp() (in module fabric.testing.fixtures), 39
sftp_objs() (in module fabric.testing.fixtures), 39
start() (fabric.testing.base.MockRemote method), 37
stop() (fabric.testing.base.MockRemote method), 37
succeeded (fabric.group.GroupResult attribute), 33
sudo() (fabric.connection.Connection method), 30

T
Task (class in fabric.tasks), 34
task() (in module fabric.tasks), 34
ThreadingGroup (class in fabric.group), 33
Transfer (class in fabric.transfer), 40
transfer() (in module fabric.testing.fixtures), 39
Tunnel (class in fabric.tunnels), 41
TunnelManager (class in fabric.tunnels), 42

46 Index

	Getting started
	Getting started

	Upgrading from 1.x
	Concepts
	Authentication
	Configuration
	Networking

	The fab CLI tool
	Command-line interface

	API
	config
	connection
	exceptions
	executor
	group
	runners
	tasks
	testing
	transfer
	tunnels
	util

	Python Module Index
	Index

