

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Fabric 1.4.4 documentation

Fabric

About

Fabric is a Python (2.5 or higher) library and command-line tool for
streamlining the use of SSH for application deployment or systems
administration tasks.

It provides a basic suite of operations for executing local or remote shell
commands (normally or via sudo) and uploading/downloading files, as well as
auxiliary functionality such as prompting the running user for input, or
aborting execution.

Typical use involves creating a Python module containing one or more functions,
then executing them via the fab command-line tool. Below is a small but
complete “fabfile” containing a single task:

from fabric.api import run

def host_type():
 run('uname -s')

Once a task is defined, it may be run on one or more servers, like so:

$ fab -H localhost,linuxbox host_type
[localhost] run: uname -s
[localhost] out: Darwin
[linuxbox] run: uname -s
[linuxbox] out: Linux

Done.
Disconnecting from localhost... done.
Disconnecting from linuxbox... done.

In addition to use via the fab tool, Fabric’s components may be imported
into other Python code, providing a Pythonic interface to the SSH protocol
suite at a higher level than that provided by e.g. the ssh library (which Fabric itself uses.)

Installation

Stable releases of Fabric are best installed via pip or easy_install;
or you may download TGZ or ZIP source archives from a couple of official
locations. Detailed instructions and links may be found on the
Installation page.

We recommend using the latest stable version of Fabric; releases are made often
to prevent any large gaps in functionality between the latest stable release
and the development version.

However, if you want to live on the edge, you can pull down the source code
from our Git repository, or fork us on Github. The Installation page has
details for how to access the source code.

Development

Any hackers interested in improving Fabric (or even users interested in how
Fabric is put together or released) please see the Development page. It
contains comprehensive info on contributing, repository layout, our release
strategy, and more.

Documentation

Please note that all documentation is currently written with Python 2.5 users
in mind, but with an eye for eventual Python 3.x compatibility. This leads to
the following patterns that may throw off readers used to Python 2.4 or who
have already upgraded to Python 2.6/2.7:

	from __future__ import with_statement: a “future import” required to
use the with statement in Python 2.5 – a feature you’ll be using
frequently. Python 2.6+ users don’t need to do this.

	<true_value> if <expression> else <false_value>: Python’s relatively new
ternary statement, available in 2.5 and newer. Python 2.4 and older used to
fake this with <expression> and <true_value> or <false_value> (which
isn’t quite the same thing and has some logical loopholes.)

	print(<expression>) instead of print <expression>: We use the
print statement’s optional parentheses where possible, in order to be
more compatible with Python 3.x (in which print becomes a function.)

Tutorial

For new users, and/or for an overview of Fabric’s basic functionality, please
see the Overview and Tutorial. The rest of the documentation will assume you’re
at least passingly familiar with the material contained within.

Usage documentation

The following list contains all major sections of Fabric’s prose (non-API)
documentation, which expands upon the concepts outlined in the
Overview and Tutorial and also covers advanced topics.

	The environment dictionary, env
	Environment as configuration

	Environment as shared state

	Other considerations

	Full list of env vars

	Execution model
	Execution strategy

	Defining tasks

	Defining host lists

	Intelligently executing tasks with execute

	Failure handling

	Connections

	Password management

	Leveraging native SSH config files

	fab options and arguments
	Basic use

	Arbitrary remote shell commands

	Command-line options

	Per-task arguments

	Settings files

	Fabfile construction and use
	Fabfile discovery

	Importing Fabric

	Defining tasks and importing callables

	Interaction with remote programs
	Combining stdout and stderr

	Pseudo-terminals

	Combining the two

	Library Use
	Connections

	Disconnecting

	Final note

	Managing output
	Output levels

	Hiding and/or showing output levels

	Parallel execution
	What it does

	How to use it

	Bubble size

	Linewise vs bytewise output

	SSH behavior
	Unknown hosts

	Known hosts with changed keys

	Defining tasks
	New-style tasks

	Classic tasks

FAQ

Some frequently encountered questions, coupled with answers/solutions/excuses,
may be found on the Frequently Asked Questions (FAQ) page.

API documentation

Fabric maintains two sets of API documentation, autogenerated from the source
code’s docstrings (which are typically very thorough.)

Core API

The core API is loosely defined as those functions, classes and methods
which form the basic building blocks of Fabric (such as
run and sudo) upon which everything
else (the below “contrib” section, and user fabfiles) builds.

	Color output functions

	Context Managers

	Decorators

	Network

	Operations

	Tasks

	Utils

Contrib API

Fabric’s contrib package contains commonly useful tools (often merged in
from user fabfiles) for tasks such as user I/O, modifying remote files, and so
forth. While the core API is likely to remain small and relatively unchanged
over time, this contrib section will grow and evolve (while trying to remain
backwards-compatible) as more use-cases are solved and added.

	Console Output Utilities

	Django Integration

	File and Directory Management

	Project Tools

Changelog

Please see the changelog.

Roadmap

Please see the roadmap.

Getting help

If you’ve scoured the prose and API
documentation and still can’t find an answer to your question, below are
various support resources that should help. We do request that you do at least
skim the documentation before posting tickets or mailing list questions,
however!

Mailing list

The best way to get help with using Fabric is via the fab-user mailing list [http://lists.nongnu.org/mailman/listinfo/fab-user] (currently hosted at
nongnu.org.) The Fabric developers do their best to reply promptly, and the
list contains an active community of other Fabric users and contributors as
well.

Twitter

Fabric has an official Twitter account, @pyfabric [http://twitter.com/pyfabric], which is used for announcements and occasional
related news tidbits (e.g. “Hey, check out this neat article on Fabric!”).

Bugs/ticket tracker

To file new bugs or search existing ones, you may visit Fabric’s Github Issues [https://github.com/fabric/fabric/issues] page. This does require a (free, easy to set up) Github account.

IRC

We maintain a semi-official IRC channel at #fabric on Freenode
(irc://irc.freenode.net) where the developers and other users may be found.
As always with IRC, we can’t promise immediate responses, but some folks keep
logs of the channel and will try to get back to you when they can.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Overview and Tutorial

Welcome to Fabric!

This document is a whirlwind tour of Fabric’s features and a quick guide to its
use. Additional documentation (which is linked to throughout) can be found in
the usage documentation – please make sure to check it out.

What is Fabric?

As the README says:

Fabric is a Python (2.5 or higher) library and command-line tool for
streamlining the use of SSH for application deployment or systems
administration tasks.

More specifically, Fabric is:

	A tool that lets you execute arbitrary Python functions via the command
line;

	A library of subroutines (built on top of a lower-level library) to make
executing shell commands over SSH easy and Pythonic.

Naturally, most users combine these two things, using Fabric to write and
execute Python functions, or tasks, to automate interactions with remote
servers. Let’s take a look.

Hello, fab

This wouldn’t be a proper tutorial without “the usual”:

def hello():
 print("Hello world!")

Placed in a Python module file named fabfile.py in your current working
directory, that hello function can be executed with the fab tool
(installed as part of Fabric) and does just what you’d expect:

$ fab hello
Hello world!

Done.

That’s all there is to it. This functionality allows Fabric to be used as a
(very) basic build tool even without importing any of its API.

Note

The fab tool simply imports your fabfile and executes the function or
functions you instruct it to. There’s nothing magic about it – anything
you can do in a normal Python script can be done in a fabfile!

See also

Execution strategy, Defining tasks, fab options and arguments

Task arguments

It’s often useful to pass runtime parameters into your tasks, just as you might
during regular Python programming. Fabric has basic support for this using a
shell-compatible notation: <task name>:<arg>,<kwarg>=<value>,.... It’s
contrived, but let’s extend the above example to say hello to you personally:

def hello(name="world"):
 print("Hello %s!" % name)

By default, calling fab hello will still behave as it did before; but now
we can personalize it:

$ fab hello:name=Jeff
Hello Jeff!

Done.

Those already used to programming in Python might have guessed that this
invocation behaves exactly the same way:

$ fab hello:Jeff
Hello Jeff!

Done.

For the time being, your argument values will always show up in Python as
strings and may require a bit of string manipulation for complex types such
as lists. Future versions may add a typecasting system to make this easier.

See also

Per-task arguments

Local commands

As used above, fab only really saves a couple lines of
if __name__ == "__main__" boilerplate. It’s mostly designed for use with
Fabric’s API, which contains functions (or operations) for executing shell
commands, transferring files, and so forth.

Let’s build a hypothetical Web application fabfile. This example scenario is
as follows: The Web application is managed via Git on a remote host
vcshost. On localhost, we have a local clone of said Web application.
When we push changes back to vcshost, we want to be able to immediately
install these changes on a remote host my_server in an automated fashion.
We will do this by automating the local and remote Git commands.

Fabfiles usually work best at the root of a project:

.
|-- __init__.py
|-- app.wsgi
|-- fabfile.py <-- our fabfile!
|-- manage.py
`-- my_app
 |-- __init__.py
 |-- models.py
 |-- templates
 | `-- index.html
 |-- tests.py
 |-- urls.py
 `-- views.py

Note

We’re using a Django application here, but only as an example – Fabric is
not tied to any external codebase, save for its SSH library.

For starters, perhaps we want to run our tests and commit to our VCS so we’re
ready for a deploy:

from fabric.api import local

def prepare_deploy():
 local("./manage.py test my_app")
 local("git add -p && git commit")
 local("git push")

The output of which might look a bit like this:

$ fab prepare_deploy
[localhost] run: ./manage.py test my_app
Creating test database...
Creating tables
Creating indexes
..
--
Ran 42 tests in 9.138s

OK
Destroying test database...

[localhost] run: git add -p && git commit

<interactive Git add / git commit edit message session>

[localhost] run: git push

<git push session, possibly merging conflicts interactively>

Done.

The code itself is straightforward: import a Fabric API function,
local, and use it to run and interact with local shell
commands. The rest of Fabric’s API is similar – it’s all just Python.

See also

Operations, Fabfile discovery

Organize it your way

Because Fabric is “just Python” you’re free to organize your fabfile any way
you want. For example, it’s often useful to start splitting things up into
subtasks:

from fabric.api import local

def test():
 local("./manage.py test my_app")

def commit():
 local("git add -p && git commit")

def push():
 local("git push")

def prepare_deploy():
 test()
 commit()
 push()

The prepare_deploy task can be called just as before, but now you can make
a more granular call to one of the sub-tasks, if desired.

Failure

Our base case works fine now, but what happens if our tests fail? Chances are
we want to put on the brakes and fix them before deploying.

Fabric checks the return value of programs called via operations and will abort
if they didn’t exit cleanly. Let’s see what happens if one of our tests
encounters an error:

$ fab prepare_deploy
[localhost] run: ./manage.py test my_app
Creating test database...
Creating tables
Creating indexes
.............E............................
==
ERROR: testSomething (my_project.my_app.tests.MainTests)
--
Traceback (most recent call last):
[...]

--
Ran 42 tests in 9.138s

FAILED (errors=1)
Destroying test database...

Fatal error: local() encountered an error (return code 2) while executing './manage.py test my_app'

Aborting.

Great! We didn’t have to do anything ourselves: Fabric detected the failure and
aborted, never running the commit task.

See also

Failure handling (usage documentation)

Failure handling

But what if we wanted to be flexible and give the user a choice? A setting
(or environment variable, usually shortened to env var) called
warn_only lets you turn aborts into warnings, allowing flexible error
handling to occur.

Let’s flip this setting on for our test function, and then inspect the
result of the local call ourselves:

from __future__ import with_statement
from fabric.api import local, settings, abort
from fabric.contrib.console import confirm

def test():
 with settings(warn_only=True):
 result = local('./manage.py test my_app', capture=True)
 if result.failed and not confirm("Tests failed. Continue anyway?"):
 abort("Aborting at user request.")

[...]

In adding this new feature we’ve introduced a number of new things:

	The __future__ import required to use with: in Python 2.5;

	Fabric’s contrib.console submodule, containing the
confirm function, used for simple yes/no prompts;

	The settings context manager, used to apply
settings to a specific block of code;

	Command-running operations like local can return objects
containing info about their result (such as .failed, or
.return_code);

	And the abort function, used to manually abort execution.

However, despite the additional complexity, it’s still pretty easy to follow,
and is now much more flexible.

See also

Context Managers, Full list of env vars

Making connections

Let’s start wrapping up our fabfile by putting in the keystone: a deploy
task that is destined to run on one or more remote server(s), and ensures the
code is up to date:

def deploy():
 code_dir = '/srv/django/myproject'
 with cd(code_dir):
 run("git pull")
 run("touch app.wsgi")

Here again, we introduce a handful of new concepts:

	Fabric is just Python – so we can make liberal use of regular Python code
constructs such as variables and string interpolation;

	cd, an easy way of prefixing commands with a cd
/to/some/directory call. This is similar to lcd
which does the same locally.

	run, which is similar to local but
runs remotely instead of locally.

We also need to make sure we import the new functions at the top of our file:

from __future__ import with_statement
from fabric.api import local, settings, abort, run, cd
from fabric.contrib.console import confirm

With these changes in place, let’s deploy:

$ fab deploy
No hosts found. Please specify (single) host string for connection: my_server
[my_server] run: git pull
[my_server] out: Already up-to-date.
[my_server] out:
[my_server] run: touch app.wsgi

Done.

We never specified any connection info in our fabfile, so Fabric doesn’t know
on which host(s) the remote command should be executed. When this happens,
Fabric prompts us at runtime. Connection definitions use SSH-like “host
strings” (e.g. user@host:port) and will use your local username as a
default – so in this example, we just had to specify the hostname,
my_server.

Remote interactivity

git pull works fine if you’ve already got a checkout of your source code –
but what if this is the first deploy? It’d be nice to handle that case too and
do the initial git clone:

def deploy():
 code_dir = '/srv/django/myproject'
 with settings(warn_only=True):
 if run("test -d %s" % code_dir).failed:
 run("git clone user@vcshost:/path/to/repo/.git %s" % code_dir)
 with cd(code_dir):
 run("git pull")
 run("touch app.wsgi")

As with our calls to local above, run
also lets us construct clean Python-level logic based on executed shell
commands. However, the interesting part here is the git clone call: since
we’re using Git’s SSH method of accessing the repository on our Git server,
this means our remote run call will need to authenticate
itself.

Older versions of Fabric (and similar high level SSH libraries) run remote
programs in limbo, unable to be touched from the local end. This is
problematic when you have a serious need to enter passwords or otherwise
interact with the remote program.

Fabric 1.0 and later breaks down this wall and ensures you can always talk to
the other side. Let’s see what happens when we run our updated deploy task
on a new server with no Git checkout:

$ fab deploy
No hosts found. Please specify (single) host string for connection: my_server
[my_server] run: test -d /srv/django/myproject

Warning: run() encountered an error (return code 1) while executing 'test -d /srv/django/myproject'

[my_server] run: git clone user@vcshost:/path/to/repo/.git /srv/django/myproject
[my_server] out: Cloning into /srv/django/myproject...
[my_server] out: Password: <enter password>
[my_server] out: remote: Counting objects: 6698, done.
[my_server] out: remote: Compressing objects: 100% (2237/2237), done.
[my_server] out: remote: Total 6698 (delta 4633), reused 6414 (delta 4412)
[my_server] out: Receiving objects: 100% (6698/6698), 1.28 MiB, done.
[my_server] out: Resolving deltas: 100% (4633/4633), done.
[my_server] out:
[my_server] run: git pull
[my_server] out: Already up-to-date.
[my_server] out:
[my_server] run: touch app.wsgi

Done.

Notice the Password: prompt – that was our remote git call on our Web server, asking for the password to the Git server. We were able to type it in and the clone continued normally.

See also

Interaction with remote programs

Defining connections beforehand

Specifying connection info at runtime gets old real fast, so Fabric provides a
handful of ways to do it in your fabfile or on the command line. We won’t cover
all of them here, but we will show you the most common one: setting the global
host list, env.hosts.

env is a global dictionary-like object driving many of
Fabric’s settings, and can be written to with attributes as well (in fact,
settings, seen above, is simply a wrapper for this.)
Thus, we can modify it at module level near the top of our fabfile like so:

from __future__ import with_statement
from fabric.api import *
from fabric.contrib.console import confirm

env.hosts = ['my_server']

def test():
 do_test_stuff()

When fab loads up our fabfile, our modification of env will execute,
storing our settings change. The end result is exactly as above: our deploy
task will run against the my_server server.

This is also how you can tell Fabric to run on multiple remote systems at once:
because env.hosts is a list, fab iterates over it, calling the given
task once for each connection.

See also

The environment dictionary, env, How host lists are constructed

Conclusion

Our completed fabfile is still pretty short, as such things go. Here it is in
its entirety:

from __future__ import with_statement
from fabric.api import *
from fabric.contrib.console import confirm

env.hosts = ['my_server']

def test():
 with settings(warn_only=True):
 result = local('./manage.py test my_app', capture=True)
 if result.failed and not confirm("Tests failed. Continue anyway?"):
 abort("Aborting at user request.")

def commit():
 local("git add -p && git commit")

def push():
 local("git push")

def prepare_deploy():
 test()
 commit()
 push()

def deploy():
 code_dir = '/srv/django/myproject'
 with settings(warn_only=True):
 if run("test -d %s" % code_dir).failed:
 run("git clone user@vcshost:/path/to/repo/.git %s" % code_dir)
 with cd(code_dir):
 run("git pull")
 run("touch app.wsgi")

This fabfile makes use of a large portion of Fabric’s feature set:

	defining fabfile tasks and running them with fab;

	calling local shell commands with local;

	modifying env vars with settings;

	handling command failures, prompting the user, and manually aborting;

	and defining host lists and run-ning remote commands.

However, there’s still a lot more we haven’t covered here! Please make sure you
follow the various “see also” links, and check out the documentation table of
contents on the main index page.

Thanks for reading!

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Installation

Fabric is best installed via pip [http://pip.openplans.org] (highly
recommended) or easy_install [http://wiki.python.org/moin/CheeseShopTutorial] (older, but still works
fine), e.g.:

$ pip install fabric

You may also opt to use your operating system’s package manager; the package is
typically called fabric or python-fabric. E.g.:

$ sudo apt-get install fabric

Advanced users wanting to install a development version may use pip to grab
the latest master branch:

$ pip install fabric==dev

Or, to install an editable version for debugging/hacking, execute pip install
-e . (or python setup.py install) inside a downloaded
or cloned copy of the source code.

Dependencies

In order for Fabric’s installation to succeed, you will need four primary pieces of software:

	the Python programming language;

	the setuptools packaging/installation library;

	the Python ssh SSH2 library;

	and ssh‘s dependency, the PyCrypto cryptography library.

and, if using the parallel execution mode:

	the multiprocessing library.

Please read on for important details on each dependency – there are a few
gotchas.

Python

Fabric requires Python [http://python.org] version 2.5 or 2.6. Some caveats
and notes about other Python versions:

	We are not planning on supporting Python 2.4 given its age and the number
of useful tools in Python 2.5 such as context managers and new modules.
That said, the actual amount of 2.5-specific functionality is not
prohibitively large, and we would link to – but not support – a third-party
2.4-compatible fork. (No such fork exists at this time, to our knowledge.)

	Fabric has not yet been tested on Python 3.x and is thus likely to be
incompatible with that line of development. However, we try to be at least
somewhat forward-looking (e.g. using print() instead of print) and
will definitely be porting to 3.x in the future once our dependencies do.

setuptools

Setuptools [http://pypi.python.org/pypi/setuptools] comes with some Python installations by default; if yours doesn’t,
you’ll need to grab it. In such situations it’s typically packaged as
python-setuptools, py25-setuptools or similar. Fabric may drop its
setuptools dependency in the future, or include alternative support for the
Distribute [http://pypi.python.org/pypi/distribute] project, but for now setuptools is required for installation.

PyCrypto

PyCrypto [https://www.dlitz.net/software/pycrypto/] provides the low-level
(C-based) encryption algorithms used to run SSH, and is thus required by our
SSH library. There are a couple gotchas associated with installing PyCrypto:
its compatibility with Python’s package tools, and the fact that it is a
C-based extension.

Package tools

We strongly recommend using pip to install Fabric as it is newer and
generally better than easy_install. However, a combination of bugs in
specific versions of Python, pip and PyCrypto can prevent installation of
PyCrypto. Specifically:

	Python = 2.5.x

	PyCrypto >= 2.1 (which is required to run Fabric >= 1.3)

	pip < 0.8.1

When all three criteria are met, you may encounter No such file or
directory IOErrors when trying to pip install Fabric or pip install
PyCrypto.

The fix is simply to make sure at least one of the above criteria is not met,
by doing the following (in order of preference):

	Upgrade to pip 0.8.1 or above, e.g. by running pip install -U pip.

	Upgrade to Python 2.6 or above.

	Downgrade to Fabric 1.2.x, which does not require PyCrypto >= 2.1, and
install PyCrypto 2.0.1 (the oldest version on PyPI which works with Fabric
1.2.)

C extension

Unless you are installing from a precompiled source such as a Debian apt
repository or RedHat RPM, or using pypm, you will also need the
ability to build Python C-based modules from source in order to install
PyCrypto. Users on Unix-based platforms such as Ubuntu or Mac OS X will
need the traditional C build toolchain installed (e.g. Developer Tools / XCode
Tools on the Mac, or the build-essential package on Ubuntu or Debian Linux
– basically, anything with gcc, make and so forth) as well as the
Python development libraries, often named python-dev or similar.

For Windows users we recommend using ActivePython and PyPM, installing a C
development environment such as Cygwin [http://cygwin.com] or obtaining a
precompiled Win32 PyCrypto package from voidspace’s Python modules page [http://www.voidspace.org.uk/python/modules.shtml#pycrypto].

Note

Some Windows users whose Python is 64-bit have found that the PyCrypto
dependency winrandom may not install properly, leading to ImportErrors.
In this scenario, you’ll probably need to compile winrandom yourself
via e.g. MS Visual Studio. See #194 [https://github.com/fabric/fabric/issues/194] for info.

multiprocessing

An optional dependency, the multiprocessing library is included in Python’s
standard library in version 2.6 and higher. If you’re using Python 2.5 and want
to make use of Fabric’s parallel execution features
you’ll need to install it manually; the recommended route, as usual, is via
pip. Please see the multiprocessing PyPI page [http://pypi.python.org/pypi/multiprocessing/] for details.

Warning

Early versions of Python 2.6 (in our testing, 2.6.0 through 2.6.2) ship
with a buggy multiprocessing module that appears to cause Fabric to
hang at the end of sessions involving large numbers of concurrent hosts.
If you encounter this problem, either use env.pool_size / -z to limit the amount of concurrency, or upgrade to Python
>=2.6.3.

Python 2.5 is unaffected, as it requires the PyPI version of
multiprocessing, which is newer than that shipped with Python <2.6.3.

Development dependencies

If you are interested in doing development work on Fabric (or even just running
the test suite), you may also need to install some or all of the following
packages:

	git [http://git-scm.com] and Mercurial [http://mercurial.selenic.com/wiki/], in order to obtain some of the
other dependencies below;

	Nose [http://code.google.com/p/python-nose/]

	Coverage [http://nedbatchelder.com/code/modules/coverage.html]

	PyLint [http://www.logilab.org/857]

	Fudge [http://farmdev.com/projects/fudge/index.html]

	Sphinx [http://sphinx.pocoo.org/]

For an up-to-date list of exact testing/development requirements, including
version numbers, please see the requirements.txt file included with the
source distribution. This file is intended to be used with pip, e.g. pip
install -r requirements.txt.

Downloads

To obtain a tar.gz or zip archive of the Fabric source code, you may visit
either of the following locations:

	The official downloads are located on our Github account’s Downloads page [https://github.com/fabric/fabric/downloads]. This is the spot you want to
download from for operating system packages, as the only changing part of the
URL will be the filename itself and the md5 hashes will be consistent.

	Fabric’s PyPI page [http://pypi.python.org/pypi/Fabric] offers manual
downloads in addition to being the entry point for pip and
easy-install.

Source code checkouts

The Fabric developers manage the project’s source code with the Git [http://git-scm.com] DVCS. To follow Fabric’s development via Git instead of
downloading official releases, you have the following options:

	Clone the canonical repository straight from the Fabric organization’s
repository on Github [https://github.com/fabric/fabric],
git://github.com/fabric/fabric.git

	Make your own fork of the Github repository by making a Github account,
visiting fabric/fabric [http://github.com/fabric/fabric] and clicking the
“fork” button.

Note

If you’ve obtained the Fabric source via source control and plan on
updating your checkout in the future, we highly suggest using python
setup.py develop instead – it will use symbolic links instead of file
copies, ensuring that imports of the library or use of the command-line
tool will always refer to your checkout.

For information on the hows and whys of Fabric development, including which
branches may be of interest and how you can help out, please see the
Development page.

ActivePython and PyPM

Windows users who already have ActiveState’s ActivePython [http://www.activestate.com/activepython/downloads] distribution installed
may find Fabric is best installed with its package manager, PyPM [http://code.activestate.com/pypm/]. Below is example output from an
installation of Fabric via pypm:

C:\> pypm install fabric
The following packages will be installed into "%APPDATA%\Python" (2.7):
 ssh-1.7.8 pycrypto-2.4 fabric-1.3.0
Get: [pypm-free.activestate.com] fabric 1.3.0
Get: [pypm-free.activestate.com] ssh 1.7.8
Get: [pypm-free.activestate.com] pycrypto 2.4
Installing ssh-1.7.8
Installing pycrypto-2.4
Installing fabric-1.3.0
Fixing script %APPDATA%\Python\Scripts\fab-script.py
C:\>

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Development

The Fabric development team is headed by Jeff Forcier [http://bitprophet.org], aka bitprophet. However, dozens of other
developers pitch in by submitting patches and ideas via GitHub [https://github.com/fabric/fabric], IRC or the mailing list [http://lists.nongnu.org/mailman/listinfo/fab-user].

Get the code

Please see the Source code checkouts section of the Installation
page for details on how to obtain Fabric’s source code.

Contributing

There are a number of ways to get involved with Fabric:

	Use Fabric and send us feedback! This is both the easiest and arguably
the most important way to improve the project – let us know how you
currently use Fabric and how you want to use it. (Please do try to search the
ticket tracker [https://github.com/fabric/fabric/issues] first, though,
when submitting feature ideas.)

	Report bugs. Pretty much a special case of the previous item: if you
think you’ve found a bug in Fabric, check on the ticket tracker [https://github.com/fabric/fabric/issues] to see if anyone’s reported it
yet, and if not – file a bug! If possible, try to make sure you can
replicate it repeatedly, and let us know the circumstances (what version of
Fabric you’re using, what platform you’re on, and what exactly you were doing
when the bug cropped up.)

	Submit patches or new features. Make a Github [https://github.com]
account, create a fork [http://help.github.com/fork-a-repo/] of the main
Fabric repository [https://github.com/fabric/fabric], and submit a pull
request [http://help.github.com/send-pull-requests/].

While we may not always reply promptly, we do try to make time eventually to
inspect all contributions and either incorporate them or explain why we don’t
feel the change is a good fit.

Patch submission guidelines

	Create a new Git branch specific to your change(s). For example, if
you’re adding a new feature to foo the bars, do something like the
following:

$ git checkout master # or the latest release branch -- see below
$ git pull
$ git checkout -b foo-the-bars
<hack hack hack>
$ git push origin HEAD
<submit pull request based on your new 'foo-the-bars' branch>

This makes life much easier for maintainers if you have (or ever plan to
have) additional changes in your own master branch.

	Base bugfixes off the latest release branch (e.g. 1.4) and new
features off of master. If you’re unsure which category your change
falls in, just ask on IRC or the mailing list – it’s often a judgement call.

	Make sure documentation is updated – at the very least, keep docstrings
current, and if necessary, update the ReST documentation in docs/. For
example, new env.* settings should be added to docs/usage/env.rst.

	Add a changelog entry at the top of docs/changelog.rst following
existing entries’ styles. Don’t forget to attribute yourself if you’d like
credit!

	Try writing some tests if possible – again, following existing tests is
often easiest, and a good way to tell whether the feature you’re modifying is
easily testable.

	Use hub pull-request when writing a patch for a pre-existing Github
Issue. This isn’t an absolute requirement, but makes the maintainers’ lives
much easier! Specifically: install hub [https://github.com/defunkt/hub/#installation] and then run hub
pull-request [https://github.com/defunkt/hub/#git-pull-request] to turn the
issue into a pull request containing your code.

Coding style

Fabric tries hard to honor PEP-8 [http://www.python.org/dev/peps/pep-0008/], especially (but not limited to!) the
following:

	Keep all lines under 80 characters. This goes for the ReST documentation as
well as code itself.
	Exceptions are made for situations where breaking a long string (such as a
string being print-ed from source code, or an especially long URL link
in documentation) would be kind of a pain.

	Typical Python 4-space (soft-tab) indents. No tabs! No 8 space indents! (No
2- or 3-space indents, for that matter!)

	CamelCase class names, but lowercase_underscore_separated everything
else.

Communication

If a ticket-tracker ticket exists for a given issue, please keep all
communication in that ticket’s comments – for example, when submitting patches
via Github, it’s easier for us if you leave a note in the ticket instead of
sending a Github pull request.

The core devs receive emails for just about any ticket-tracker activity, so
additional notices via Github or other means only serve to slow things down.

Branching/Repository Layout

While Fabric’s development methodology isn’t set in stone yet, the following
items detail how we currently organize the Git repository and expect to perform
merges and so forth. This will be chiefly of interest to those who wish to
follow a specific Git branch instead of released versions, or to any
contributors.

	We use a combined ‘release and feature branches’ methodology, where every
minor release (e.g. 0.9, 1.0, 1.1, 1.2 etc; see Releases below for
details on versioning) gets a release branch for bugfixes, and big feature
development is performed in a central master branch and/or in
feature-specific feature branches (e.g. a branch for reworking the internals
to be threadsafe, or one for overhauling task dependencies, etc.)

	Releases each get their own release branch, e.g. 0.9, 1.0, 1.1
etc, and from these the actual releases are tagged, e.g. 0.9.3 or
1.0.0.

	New feature work is typically done in feature branches, whose naming
convention is <ticket number>-<short-description>. For example, ticket
#61, which concerned adding cd support to get and put, was
developed in a branch named 61-add-cd-to-get-put.
	These branches are not intended for public use, and may be cleaned out of
the repositories periodically. Ideally, no one feature will be in
development long enough for its branch to become used in production!

	Completed feature work is merged into the master branch, and once enough
new features are done, a new release branch is created and optionally used to
create prerelease versions for testing – or simply released as-is.

	While we try our best not to commit broken code or change APIs without
warning, as with many other open-source projects we can only have a guarantee
of stability in the release branches. Only follow master (or, even worse,
feature branches!) if you’re willing to deal with a little pain.

	Conversely, because we try to keep release branches relatively stable, you
may find it easier to use Fabric from a source checkout of a release branch
instead of manually upgrading to new released versions. This can provide a
decent middle ground between stability and the ability to get bugfixes or
backported features easily.

	The core developers will take care of performing merging/branching on the
official repositories. Since Git is Git, contributors may of course do
whatever they wish in their own clones/forks.

	Bugfixes are to be performed on release branches and then merged into
master so that master is always up-to-date (or nearly so; while it’s
not mandatory to merge after every bugfix, doing so at least daily is a good
idea.)

	Feature branches should periodically merge in changes from
master so that when it comes time for them to merge back into master
things aren’t quite as painful.

Releases

Fabric tries to follow open-source standards and conventions in its release
tagging, including typical version numbers such as 2.0, 1.2.5, or
1.2b1. Each release will be marked as a tag in the Git repositories, and
are broken down as follows:

Major

Major releases update the first number, e.g. going from 0.9 to 1.0, and
indicate that the software has reached some very large milestone.

For example, the 1.0 release signified a commitment to a medium to long term
API and some significant backwards incompatible (compared to the 0.9 series)
features. Version 2.0 might indicate a rewrite using a new underlying network
technology or an overhaul to be more object-oriented.

Major releases will often be backwards-incompatible with the previous line of
development, though this is not a requirement, just a usual happenstance.
Users should expect to have to make at least some changes to their fabfiles
when switching between major versions.

Minor

Minor releases, such as moving from 1.0 to 1.1, typically mean that one or more
new, large features has been added. They are also sometimes used to mark off
the fact that a lot of bug fixes or small feature modifications have occurred
since the previous minor release. (And, naturally, some of them will involve
both at the same time.)

These releases are guaranteed to be backwards-compatible with all other
releases containing the same major version number, so a fabfile that works
with 1.0 should also work fine with 1.1 or even 1.9.

Bugfix/tertiary

The third and final part of version numbers, such as the ‘3’ in 1.0.3,
generally indicate a release containing one or more bugfixes, although minor
feature modifications may (rarely) occur.

This third number is sometimes omitted for the first major or minor release in
a series, e.g. 1.2 or 2.0, and in these cases it can be considered an implicit
zero (e.g. 2.0.0).

Note

The 0.9 series of development included more significant feature work than
is typically found in tertiary releases; from 1.0 onwards a more
traditional approach, as per the above, is used.

Support of older releases

Major and minor releases do not mark the end of the previous line or lines of
development:

	The two most recent minor release branches will continue to receive critical
bugfixes. For example, if 1.1 were the latest minor release, it and 1.0 would
get bugfixes, but not 0.9 or earlier; and once 1.2 came out, this window
would then only extend back to 1.1.

	Depending on the nature of bugs found and the difficulty in backporting them,
older release lines may also continue to get bugfixes – but there’s no
longer a guarantee of any kind. Thus, if a bug were found in 1.1 that
affected 0.9 and could be easily applied, a new 0.9.x version might be
released.

	This policy may change in the future to accommodate more branches, depending
on development speed.

We hope that this policy will allow us to have a rapid minor release cycle (and
thus keep new features coming out frequently) without causing users to feel too
much pressure to upgrade right away. At the same time, the backwards
compatibility guarantee means that users should still feel comfortable
upgrading to the next minor release in order to stay within this sliding
support window.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Frequently Asked Questions (FAQ)

These are some of the most commonly encountered problems or frequently asked
questions which we receive from users. They aren’t intended as a substitute for
reading the rest of the documentation, especially the usage docs, so please make sure you check those out if your question is not
answered here.

Init scripts don’t work!

Init-style start/stop/restart scripts (e.g. /etc/init.d/apache2 start)
sometimes don’t like Fabric’s allocation of a pseudo-tty, which is active by
default. In almost all cases, explicitly calling the command in question with
pty=False works correctly:

sudo("/etc/init.d/apache2 restart", pty=False)

If you have no need for interactive behavior and run into this problem
frequently, you may want to deactivate pty allocation globally by setting
env.always_use_pty to False.

My (cd/workon/export/etc) calls don’t seem to work!

While Fabric can be used for many shell-script-like tasks, there’s a slightly
unintuitive catch: each run or sudo
call has its own distinct shell session. This is required in order for Fabric
to reliably figure out, after your command has run, what its standard out/error
and return codes were.

Unfortunately, it means that code like the following doesn’t behave as you
might assume:

def deploy():
 run("cd /path/to/application")
 run("./update.sh")

If that were a shell script, the second run call would
have executed with a current working directory of /path/to/application/ –
but because both commands are run in their own distinct session over SSH, it
actually tries to execute $HOME/update.sh instead (since your remote home
directory is the default working directory).

A simple workaround is to make use of shell logic operations such as &&,
which link multiple expressions together (provided the left hand side executed
without error) like so:

def deploy():
 run("cd /path/to/application && ./update.sh")

Fabric provides a convenient shortcut for this specific use case, in fact:
cd. There is also prefix
for arbitrary prefix commands.

Note

You might also get away with an absolute path and skip directory changing
altogether:

def deploy():
 run("/path/to/application/update.sh")

However, this requires that the command in question makes no assumptions
about your current working directory!

Why do I sometimes see err: stdin: is not a tty?

This message is typically generated by programs such as biff or mesg
lurking within your remote user’s .profile or .bashrc files (or any
other such files, including system-wide ones.) Fabric’s default mode of
operation involves executing the Bash shell in “login mode”, which causes these
files to be executed.

Because Fabric also doesn’t bother asking the remote end for a tty by default
(as it’s not usually necessary) programs fired within your startup files, which
expect a tty to be present, will complain – and thus, stderr output about
“stdin is not a tty” or similar.

There are multiple ways to deal with this problem:

	Find and remove or comment out the offending program call. If the program was
not added by you on purpose and is simply a legacy of the operating system,
this may be safe to do, and is the simplest approach.

	Override env.shell to remove the -l flag. This should tell Bash not
to load your startup files. If you don’t depend on the contents of your
startup files (such as aliases or whatnot) this may be a good solution.

	Pass pty=True to run or sudo, which will force allocation of a
pseudo-tty on the remote end, and hopefully cause the offending program to be
less cranky.

Why can’t I run programs in the background with &? It makes Fabric hang.

Because Fabric executes a shell on the remote end for each invocation of
run or sudo (see also), backgrounding a
process via the shell will not work as expected. Backgrounded processes may
still prevent the calling shell from exiting until they stop running, and this
in turn prevents Fabric from continuing on with its own execution.

The key to fixing this is to ensure that your process’ standard pipes are all
disassociated from the calling shell, which may be done in a number of ways:

	Use a pre-existing daemonization technique if one exists for the program at
hand – for example, calling an init script instead of directly invoking a
server binary.

	Run the program under nohup and redirect stdin, stdout and stderr to
/dev/null (or to your file of choice, if you need the output later):

run("nohup yes >& /dev/null < /dev/null &")

(yes is simply an example of a program that may run for a long time or
forever; >&, < and & are Bash syntax for pipe redirection and
backgrounding, respectively – see your shell’s man page for details.)

	Use tmux, screen or dtach to fully detach the process from the
running shell; these tools have the benefit of allowing you to reattach to
the process later on if needed (among many other such benefits).

My remote system doesn’t have bash installed by default, do I need to install bash?

While Fabric is written with bash in mind, it’s not an absolute
requirement. Simply change env.shell to call your desired shell, and
include an argument similar to bash‘s -c argument, which allows us to
build shell commands of the form:

/bin/bash -l -c "<command string here>"

where /bin/bash -l -c is the default value of env.shell.

Note

The -l argument specifies a login shell and is not absolutely
required, merely convenient in many situations. Some shells lack the option
entirely and it may be safely omitted in such cases.

A relatively safe baseline is to call /bin/sh, which may call the original
sh binary, or (on some systems) csh, and give it the -c
argument, like so:

from fabric.api import env

env.shell = "/bin/sh -c"

This has been shown to work on FreeBSD and may work on other systems as well.

I’m sometimes incorrectly asked for a passphrase instead of a password.

Due to a bug of sorts in our SSH layer, it’s not currently possible for Fabric
to always accurately detect the type of authentication needed. We have to try
and guess whether we’re being asked for a private key passphrase or a remote
server password, and in some cases our guess ends up being wrong.

The most common such situation is where you, the local user, appear to have an
SSH keychain agent running, but the remote server is not able to honor your SSH
key, e.g. you haven’t yet transferred the public key over or are using an
incorrect username. In this situation, Fabric will prompt you with “Please
enter passphrase for private key”, but the text you enter is actually being
sent to the remote end’s password authentication.

We hope to address this in future releases by modifying a fork of the
aforementioned SSH library.

Is Fabric thread-safe?

Currently, no, it’s not – the present version of Fabric relies heavily on
shared state in order to keep the codebase simple. However, there are definite
plans to update its internals so that Fabric may be either threaded or
otherwise parallelized so your tasks can run on multiple servers concurrently.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Development roadmap

This document outlines Fabric’s intended development path. Please make sure
you’re reading the latest version [http://docs.fabfile.org/en/latest/roadmap.html] of this document!

Warning

This information is subject to change without warning, and should not be
used as a basis for any life- or career-altering decisions!

Near-term feature releases and support work

	Move non-code-related docs to a new static site on www.fabfile.org
(#419 [https://github.com/fabric/fabric/issues/419]).

	Fabric 1.4: Network-related improvements, such as an option for skipping
or retrying unreachable or otherwise “bad” hosts (#8 [https://github.com/fabric/fabric/issues/8], #348 [https://github.com/fabric/fabric/issues/348],
#249 [https://github.com/fabric/fabric/issues/249]) and SSH key changes (#72 [https://github.com/fabric/fabric/issues/72], #150 [https://github.com/fabric/fabric/issues/150].)

	Work on a new (to us; probably hacking an existing codebase) GitHub-focused
IRC bot (#169 [https://github.com/fabric/fabric/issues/169]).

	Fabric 1.5: Logging integration (#57 [https://github.com/fabric/fabric/issues/57]) and other UI tweaks,
possibly including colored output (#101 [https://github.com/fabric/fabric/issues/101]) by default.

Longer-term but probably still 1.x plans

In no particular order, some potential future feature releases:

	Work on our fork of Paramiko, ssh, to fix a number of outstanding
issues/deficiencies [https://github.com/fabric/fabric/issues/275] that
cause problems for Fabric itself (authentication failure reasons being
unclear, lack of SSH agent forwarding and/or gateway support, etc.)

	Improved object-oriented design, both internal refactoring and at the API
level (for example, Host objects as an alternative to host strings.)

Fabric 2.0

	As a lead-in, any additional 1.x-compatible internal refactorings or API
add-ons, such as aforementioned OO design patterns. Get as much done as
possible without breaking backwards compatibility.

	Make decisions about what old ways of doing things should be axed in 2.0, or
which can be easily “wrapped” in newer mechanisms without requiring lots of
legacy code.

	Any other 2.x-marked tickets introducing new, clearly-backwards-incompatible
features (see list [https://github.com/fabric/fabric/issues?labels=2.x].)

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

The environment dictionary, env

A simple but integral aspect of Fabric is what is known as the “environment”: a
Python dictionary subclass which is used as a combination settings registry and
shared inter-task data namespace.

The environment dict is currently implemented as a global singleton,
fabric.state.env, and is included in fabric.api for convenience. Keys
in env are sometimes referred to as “env variables”.

Environment as configuration

Most of Fabric’s behavior is controllable by modifying env variables, such as
env.hosts (as seen in the tutorial). Other
commonly-modified env vars include:

	user: Fabric defaults to your local username when making SSH connections,
but you can use env.user to override this if necessary. The Execution model
documentation also has info on how to specify usernames on a per-host basis.

	password: Used to explicitly set your default connection or sudo password
if desired. Fabric will prompt you when necessary if this isn’t set or
doesn’t appear to be valid.

	warn_only: a Boolean setting determining whether Fabric exits when
detecting errors on the remote end. See Execution model for more on this
behavior.

There are a number of other env variables; for the full list, see
Full list of env vars at the bottom of this document.

The settings context manager

In many situations, it’s useful to only temporarily modify env vars so that
a given settings change only applies to a block of code. Fabric provides a
settings context manager, which takes any numbr of
key/value pairs and will use them to modify env within its wrapped block.

For example, there are many situations where setting warn_only (see below)
is useful. To apply it to a few lines of code, use
settings(warn_only=True), as seen in this simplified version of the
contrib exists function:

from fabric.api import settings, run

def exists(path):
 with settings(warn_only=True):
 return run('test -e %s' % path)

See the Context Managers API documentation for details on
settings and other, similar tools.

Environment as shared state

As mentioned, the env object is simply a dictionary subclass, so your own
fabfile code may store information in it as well. This is sometimes useful for
keeping state between multiple tasks within a single execution run.

Note

This aspect of env is largely historical: in the past, fabfiles were
not pure Python and thus the environment was the only way to communicate
between tasks. Nowadays, you may call other tasks or subroutines directly,
and even keep module-level shared state if you wish.

In future versions, Fabric will become threadsafe, at which point env
may be the only easy/safe way to keep global state.

Other considerations

While it subclasses dict, Fabric’s env has been modified so that its
values may be read/written by way of attribute access, as seen in some of the
above material. In other words, env.host_string and env['host_string']
are functionally identical. We feel that attribute access can often save a bit
of typing and makes the code more readable, so it’s the recommended way to
interact with env.

The fact that it’s a dictionary can be useful in other ways, such as with
Python’s dict-based string interpolation, which is especially handy if you need
to insert multiple env vars into a single string. Using “normal” string
interpolation might look like this:

print("Executing on %s as %s" % (env.host, env.user))

Using dict-style interpolation is more readable and slightly shorter:

print("Executing on %(host)s as %(user)s" % env)

Full list of env vars

Below is a list of all predefined (or defined by Fabric itself during
execution) environment variables. While any of them may be manipulated
directly, it’s often best to use context_managers, either generally
via settings or via specific context managers such
as cd.

Note that many of these may be set via fab‘s command-line switches – see
fab options and arguments for details. Cross-links will be provided where appropriate.

abort_on_prompts

Default: False

When True, Fabric will run in a non-interactive mode, calling
abort anytime it would normally prompt the user for input (such
as password prompts, “What host to connect to?” prompts, fabfile invocation of
prompt, and so forth.) This allows users to ensure a Fabric
session will always terminate cleanly instead of blocking on user input forever
when unforeseen circumstances arise.

New in version 1.1.

See also

--abort-on-prompts

all_hosts

Default: None

Set by fab to the full host list for the currently executing command. For
informational purposes only.

See also

Execution model

always_use_pty

Default: True

When set to False, causes run/sudo
to act as if they have been called with pty=False.

The command-line flag --no-pty, if given, will set this env var to
False.

New in version 1.0.

combine_stderr

Default: True

Causes the SSH layer to merge a remote program’s stdout and stderr streams to
avoid becoming meshed together when printed. See Combining stdout and stderr for
details on why this is needed and what its effects are.

New in version 1.0.

command

Default: None

Set by fab to the currently executing command name (e.g. when executed as
$ fab task1 task2, env.command will be set to "task1" while
task1 is executing, and then to "task2".) For informational purposes
only.

See also

Execution model

command_prefixes

Default: []

Modified by prefix, and prepended to commands
executed by run/sudo.

New in version 1.0.

connection_attempts

Default: 1

Number of times Fabric will attempt to connect when connecting to a new server. For backwards compatibility reasons, it defaults to only one connection attempt.

New in version 1.4.

See also

--connection-attempts, timeout

cwd

Default: ''

Current working directory. Used to keep state for the
cd context manager.

disable_known_hosts

Default: False

If True, the SSH layer will skip loading the user’s known-hosts file.
Useful for avoiding exceptions in situations where a “known host” changing its
host key is actually valid (e.g. cloud servers such as EC2.)

See also

SSH behavior

exclude_hosts

Default: []

Specifies a list of host strings to be skipped over
during fab execution. Typically set via --exclude-hosts/-x.

New in version 1.1.

fabfile

Default: fabfile.py

Filename pattern which fab searches for when loading fabfiles.
To indicate a specific file, use the full path to the file. Obviously, it
doesn’t make sense to set this in a fabfile, but it may be specified in a
.fabricrc file or on the command line.

See also

fab options and arguments

host_string

Default: None

Defines the current user/host/port which Fabric will connect to when executing
run, put and so forth. This is set by
fab when iterating over a previously set host list, and may also be
manually set when using Fabric as a library.

See also

Execution model

forward_agent

Default: False

If True, enables forwarding of your local SSH agent to the remote end.

New in version 1.4.

See also

-A

host

Default: None

Set to the hostname part of env.host_string by fab. For informational
purposes only.

hosts

Default: []

The global host list used when composing per-task host lists.

See also

Execution model

keepalive

Default: 0 (i.e. no keepalive)

An integer specifying an SSH keepalive interval to use; basically maps to the
SSH config option ClientAliveInterval. Useful if you find connections are
timing out due to meddlesome network hardware or what have you.

See also

--keepalive

New in version 1.1.

key_filename

Default: None

May be a string or list of strings, referencing file paths to SSH key files to
try when connecting. Passed through directly to the SSH layer. May be
set/appended to with -i.

See also

Paramiko’s documentation for SSHClient.connect() [http://www.lag.net/paramiko/docs/paramiko.SSHClient-class.html#connect]

linewise

Default: False

Forces buffering by line instead of by character/byte, typically when running
in parallel mode. May be activated via --linewise. This option is
implied by env.parallel – even if linewise is False,
if parallel is True then linewise behavior will occur.

See also

Linewise vs bytewise output

New in version 1.3.

local_user

A read-only value containing the local system username. This is the same value
as user‘s initial value, but whereas user may be altered by CLI
arguments, Python code or specific host strings, local_user will always
contain the same value.

no_agent

Default: False

If True, will tell the SSH layer not to seek out running SSH agents when
using key-based authentication.

New in version 0.9.1.

no_keys

Default: False

If True, will tell the SSH layer not to load any private key files from
one’s $HOME/.ssh/ folder. (Key files explicitly loaded via fab -i will
still be used, of course.)

New in version 0.9.1.

parallel

Default: False

When True, forces all tasks to run in parallel. Implies env.linewise.

New in version 1.3.

See also

Parallel execution

password

Default: None

The default password used by the SSH layer when connecting to remote hosts,
and/or when answering sudo prompts.

See also

passwords

See also

Password management

passwords

Default: {}

This dictionary is largely for internal use, and is filled automatically as a
per-host-string password cache. Keys are full host strings and values are passwords (strings).

See also

Password management

New in version 1.0.

path

Default: ''

Used to set the $PATH shell environment variable when executing commands in
run/sudo/local.
It is recommended to use the path context manager
for managing this value instead of setting it directly.

New in version 1.0.

pool_size

Default: 0

Sets the number of concurrent processes to use when executing tasks in parallel.

New in version 1.3.

See also

Parallel execution, -z

port

Default: None

Set to the port part of env.host_string by fab when iterating over a
host list. May also be used to specify a default port.

real_fabfile

Default: None

Set by fab with the path to the fabfile it has loaded up, if it got that
far. For informational purposes only.

See also

fab options and arguments

rcfile

Default: $HOME/.fabricrc

Path used when loading Fabric’s local settings file.

See also

fab options and arguments

reject_unknown_hosts

Default: False

If True, the SSH layer will raise an exception when connecting to hosts not
listed in the user’s known-hosts file.

See also

SSH behavior

roledefs

Default: {}

Dictionary defining role name to host list mappings.

See also

Execution model

roles

Default: []

The global role list used when composing per-task host lists.

See also

Execution model

shell

Default: /bin/bash -l -c

Value used as shell wrapper when executing commands with e.g.
run. Must be able to exist in the form <env.shell>
"<command goes here>" – e.g. the default uses Bash’s -c option which
takes a command string as its value.

See also

FAQ on bash as default shell, Execution model

skip_bad_hosts

Default: False

If True, causes fab (or non-fab use of execute) to skip over hosts it can’t connect to.

New in version 1.4.

See also

--skip-bad-hosts, Excluding specific hosts, Execution model

ssh_config_path

Default: $HOME/.ssh/config

Allows specification of an alternate SSH configuration file path.

New in version 1.4.

See also

--ssh-config-path, Leveraging native SSH config files

sudo_prefix

Default: "sudo -S -p '%(sudo_prompt)s' " % env

The actual sudo command prefixed onto sudo calls’
command strings. Users who do not have sudo on their default remote
$PATH, or who need to make other changes (such as removing the -p when
passwordless sudo is in effect) may find changing this useful.

See also

The sudo operation; env.sudo_prompt

sudo_prompt

Default: "sudo password:"

Passed to the sudo program on remote systems so that Fabric may correctly
identify its password prompt.

See also

The sudo operation; env.sudo_prefix

timeout

Default: 10

Network connection timeout, in seconds.

New in version 1.4.

See also

--timeout, connection_attempts

use_shell

Default: True

Global setting which acts like the use_shell argument to
run/sudo: if it is set to False,
operations will not wrap executed commands in env.shell.

use_ssh_config

Default: False

Set to True to cause Fabric to load your local SSH config file.

New in version 1.4.

See also

Leveraging native SSH config files

user

Default: User’s local username

The username used by the SSH layer when connecting to remote hosts. May be set
globally, and will be used when not otherwise explicitly set in host strings.
However, when explicitly given in such a manner, this variable will be
temporarily overwritten with the current value – i.e. it will always display
the user currently being connected as.

To illustrate this, a fabfile:

from fabric.api import env, run

env.user = 'implicit_user'
env.hosts = ['host1', 'explicit_user@host2', 'host3']

def print_user():
 with hide('running'):
 run('echo "%(user)s"' % env)

and its use:

$ fab print_user

[host1] out: implicit_user
[explicit_user@host2] out: explicit_user
[host3] out: implicit_user

Done.
Disconnecting from host1... done.
Disconnecting from host2... done.
Disconnecting from host3... done.

As you can see, during execution on host2, env.user was set to
"explicit_user", but was restored to its previous value
("implicit_user") afterwards.

Note

env.user is currently somewhat confusing (it’s used for configuration
and informational purposes) so expect this to change in the future –
the informational aspect will likely be broken out into a separate env
variable.

See also

Execution model

version

Default: current Fabric version string

Mostly for informational purposes. Modification is not recommended, but
probably won’t break anything either.

warn_only

Default: False

Specifies whether or not to warn, instead of abort, when
run/sudo/local
encounter error conditions.

See also

Execution model

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Execution model

If you’ve read the Overview and Tutorial, you should already be familiar with how
Fabric operates in the base case (a single task on a single host.) However, in
many situations you’ll find yourself wanting to execute multiple tasks and/or
on multiple hosts. Perhaps you want to split a big task into smaller reusable
parts, or crawl a collection of servers looking for an old user to remove. Such
a scenario requires specific rules for when and how tasks are executed.

This document explores Fabric’s execution model, including the main execution
loop, how to define host lists, how connections are made, and so forth.

Execution strategy

Fabric defaults to a single, serial execution method, though there is an
alternative parallel mode available as of Fabric 1.3 (see
Parallel execution). This default behavior is as follows:

	A list of tasks is created. Currently this list is simply the arguments given
to fab, preserving the order given.

	For each task, a task-specific host list is generated from various
sources (see How host lists are constructed below for details.)

	The task list is walked through in order, and each task is run once per host
in its host list.

	Tasks with no hosts in their host list are considered local-only, and will
always run once and only once.

Thus, given the following fabfile:

from fabric.api import run, env

env.hosts = ['host1', 'host2']

def taskA():
 run('ls')

def taskB():
 run('whoami')

and the following invocation:

$ fab taskA taskB

you will see that Fabric performs the following:

	taskA executed on host1

	taskA executed on host2

	taskB executed on host1

	taskB executed on host2

While this approach is simplistic, it allows for a straightforward composition
of task functions, and (unlike tools which push the multi-host functionality
down to the individual function calls) enables shell script-like logic where
you may introspect the output or return code of a given command and decide what
to do next.

Defining tasks

For details on what constitutes a Fabric task and how to organize them, please see Defining tasks.

Defining host lists

Unless you’re using Fabric as a simple build system (which is possible, but not
the primary use-case) having tasks won’t do you any good without the ability to
specify remote hosts on which to execute them. There are a number of ways to do
so, with scopes varying from global to per-task, and it’s possible mix and
match as needed.

Hosts

Hosts, in this context, refer to what are also called “host strings”: Python
strings specifying a username, hostname and port combination, in the form of
username@hostname:port. User and/or port (and the associated @ or
:) may be omitted, and will be filled by the executing user’s local
username, and/or port 22, respectively. Thus, admin@foo.com:222,
deploy@website and nameserver1 could all be valid host strings.

Note

The user/hostname split occurs at the last @ found, so e.g. email
address usernames are valid and will be parsed correctly.

During execution, Fabric normalizes the host strings given and then stores each
part (username/hostname/port) in the environment dictionary, for both its use
and for tasks to reference if the need arises. See The environment dictionary, env for details.

Roles

Host strings map to single hosts, but sometimes it’s useful to arrange hosts in
groups. Perhaps you have a number of Web servers behind a load balancer and
want to update all of them, or want to run a task on “all client servers”.
Roles provide a way of defining strings which correspond to lists of host
strings, and can then be specified instead of writing out the entire list every
time.

This mapping is defined as a dictionary, env.roledefs, which must be
modified by a fabfile in order to be used. A simple example:

from fabric.api import env

env.roledefs['webservers'] = ['www1', 'www2', 'www3']

Since env.roledefs is naturally empty by default, you may also opt to
re-assign to it without fear of losing any information (provided you aren’t
loading other fabfiles which also modify it, of course):

from fabric.api import env

env.roledefs = {
 'web': ['www1', 'www2', 'www3'],
 'dns': ['ns1', 'ns2']
}

In addition to list/iterable object types, the values in env.roledefs may
be callables, and will thus be called when looked up when tasks are run instead
of at module load time. (For example, you could connect to remote servers
to obtain role definitions, and not worry about causing delays at fabfile load
time when calling e.g. fab --list.)

Use of roles is not required in any way – it’s simply a convenience in
situations where you have common groupings of servers.

Changed in version 0.9.2: Added ability to use callables as roledefs values.

How host lists are constructed

There are a number of ways to specify host lists, either globally or per-task,
and generally these methods override one another instead of merging together
(though this may change in future releases.) Each such method is typically
split into two parts, one for hosts and one for roles.

Globally, via env

The most common method of setting hosts or roles is by modifying two key-value
pairs in the environment dictionary, env: hosts and roles.
The value of these variables is checked at runtime, while constructing each
tasks’s host list.

Thus, they may be set at module level, which will take effect when the fabfile
is imported:

from fabric.api import env, run

env.hosts = ['host1', 'host2']

def mytask():
 run('ls /var/www')

Such a fabfile, run simply as fab mytask, will run mytask on host1
followed by host2.

Since the env vars are checked for each task, this means that if you have the
need, you can actually modify env in one task and it will affect all
following tasks:

from fabric.api import env, run

def set_hosts():
 env.hosts = ['host1', 'host2']

def mytask():
 run('ls /var/www')

When run as fab set_hosts mytask, set_hosts is a “local” task – its
own host list is empty – but mytask will again run on the two hosts given.

Note

This technique used to be a common way of creating fake “roles”, but is
less necessary now that roles are fully implemented. It may still be useful
in some situations, however.

Alongside env.hosts is env.roles (not to be confused with
env.roledefs!) which, if given, will be taken as a list of role names to
look up in env.roledefs.

Globally, via the command line

In addition to modifying env.hosts, env.roles, and
env.exclude_hosts at the module level, you may define them by passing
comma-separated string arguments to the command-line switches
--hosts/-H and --roles/-R, e.g.:

$ fab -H host1,host2 mytask

Such an invocation is directly equivalent to env.hosts = ['host1', 'host2']
– the argument parser knows to look for these arguments and will modify
env at parse time.

Note

It’s possible, and in fact common, to use these switches to set only a
single host or role. Fabric simply calls string.split(',') on the given
string, so a string with no commas turns into a single-item list.

It is important to know that these command-line switches are interpreted
before your fabfile is loaded: any reassignment to env.hosts or
env.roles in your fabfile will overwrite them.

If you wish to nondestructively merge the command-line hosts with your
fabfile-defined ones, make sure your fabfile uses env.hosts.extend()
instead:

from fabric.api import env, run

env.hosts.extend(['host3', 'host4'])

def mytask():
 run('ls /var/www')

When this fabfile is run as fab -H host1,host2 mytask, env.hosts will
then contain ['host1', 'host2', 'host3', 'host4'] at the time that
mytask is executed.

Note

env.hosts is simply a Python list object – so you may use
env.hosts.append() or any other such method you wish.

Per-task, via the command line

Globally setting host lists only works if you want all your tasks to run on the
same host list all the time. This isn’t always true, so Fabric provides a few
ways to be more granular and specify host lists which apply to a single task
only. The first of these uses task arguments.

As outlined in fab options and arguments, it’s possible to specify per-task arguments via a
special command-line syntax. In addition to naming actual arguments to your
task function, this may be used to set the host, hosts, role or
roles “arguments”, which are interpreted by Fabric when building host lists
(and removed from the arguments passed to the task itself.)

Note

Since commas are already used to separate task arguments from one another,
semicolons must be used in the hosts or roles arguments to
delineate individual host strings or role names. Furthermore, the argument
must be quoted to prevent your shell from interpreting the semicolons.

Take the below fabfile, which is the same one we’ve been using, but which
doesn’t define any host info at all:

from fabric.api import run

def mytask():
 run('ls /var/www')

To specify per-task hosts for mytask, execute it like so:

$ fab mytask:hosts="host1;host2"

This will override any other host list and ensure mytask always runs on
just those two hosts.

Per-task, via decorators

If a given task should always run on a predetermined host list, you may wish to
specify this in your fabfile itself. This can be done by decorating a task
function with the hosts or roles
decorators. These decorators take a variable argument list, like so:

from fabric.api import hosts, run

@hosts('host1', 'host2')
def mytask():
 run('ls /var/www')

They will also take an single iterable argument, e.g.:

my_hosts = ('host1', 'host2')
@hosts(my_hosts)
def mytask():
 # ...

When used, these decorators override any checks of env for that particular
task’s host list (though env is not modified in any way – it is simply
ignored.) Thus, even if the above fabfile had defined env.hosts or the call
to fab uses --hosts/-H, mytask would still run
on a host list of ['host1', 'host2'].

However, decorator host lists do not override per-task command-line
arguments, as given in the previous section.

Order of precedence

We’ve been pointing out which methods of setting host lists trump the others,
as we’ve gone along. However, to make things clearer, here’s a quick breakdown:

	Per-task, command-line host lists (fab mytask:host=host1) override
absolutely everything else.

	Per-task, decorator-specified host lists (@hosts('host1')) override the
env variables.

	Globally specified host lists set in the fabfile (env.hosts = ['host1'])
can override such lists set on the command-line, but only if you’re not
careful (or want them to.)

	Globally specified host lists set on the command-line (--hosts=host1)
will initialize the env variables, but that’s it.

This logic may change slightly in the future to be more consistent (e.g.
having --hosts somehow take precedence over env.hosts in the
same way that command-line per-task lists trump in-code ones) but only in a
backwards-incompatible release.

Combining host lists

There is no “unionizing” of hosts between the various sources mentioned in
How host lists are constructed. If env.hosts is set to ['host1', 'host2', 'host3'],
and a per-function (e.g. via hosts) host list is set to
just ['host2', 'host3'], that function will not execute on host1,
because the per-task decorator host list takes precedence.

However, for each given source, if both roles and hosts are specified, they
will be merged together into a single host list. Take, for example, this
fabfile where both of the decorators are used:

from fabric.api import env, hosts, roles, run

env.roledefs = {'role1': ['b', 'c']}

@hosts('a', 'b')
@roles('role1')
def mytask():
 run('ls /var/www')

Assuming no command-line hosts or roles are given when mytask is executed,
this fabfile will call mytask on a host list of ['a', 'b', 'c'] – the
union of role1 and the contents of the hosts call.

Excluding specific hosts

At times, it is useful to exclude one or more specific hosts, e.g. to override
a few bad or otherwise undesirable hosts which are pulled in from a role or an
autogenerated host list.

Note

As of Fabric 1.4, you may wish to use skip_bad_hosts instead, which
automatically skips over any unreachable hosts.

Host exclusion may be accomplished globally with --exclude-hosts/-x:

$ fab -R myrole -x host2,host5 mytask

If myrole was defined as ['host1', 'host2', ..., 'host15'], the above
invocation would run with an effective host list of ['host1', 'host3',
'host4', 'host6', ..., 'host15'].

Note

Using this option does not modify env.hosts – it only causes the
main execution loop to skip the requested hosts.

Exclusions may be specified per-task by using an extra exclude_hosts kwarg,
which is implemented similarly to the abovementioned hosts and roles
per-task kwargs, in that it is stripped from the actual task invocation. This
example would have the same result as the global exclude above:

$ fab mytask:roles=myrole,exclude_hosts="host2;host5"

Note that the host list is semicolon-separated, just as with the hosts
per-task argument.

Combining exclusions

Host exclusion lists, like host lists themselves, are not merged together
across the different “levels” they can be declared in. For example, a global
-x option will not affect a per-task host list set with a decorator or
keyword argument, nor will per-task exclude_hosts keyword arguments affect
a global -H list.

There is one minor exception to this rule, namely that CLI-level keyword
arguments (mytask:exclude_hosts=x,y) will be taken into account when
examining host lists set via @hosts or @roles. Thus a task function
decorated with @hosts('host1', 'host2') executed as fab
taskname:exclude_hosts=host2 will only run on host1.

As with the host list merging, this functionality is currently limited (partly
to keep the implementation simple) and may be expanded in future releases.

Intelligently executing tasks with execute

New in version 1.3.

Most of the information here involves “top level” tasks executed via fab, such as the first example where we called fab taskA taskB.
However, it’s often convenient to wrap up multi-task invocations like this into
their own, “meta” tasks.

Prior to Fabric 1.3, this had to be done by hand, as outlined in
Library Use. Fabric’s design eschews magical behavior, so simply
calling a task function does not take into account decorators such as
roles.

New in Fabric 1.3 is the execute helper function, which takes a
task object or name as its first argument. Using it is effectively the same as
calling the given task from the command line: all the rules given above in
How host lists are constructed apply. (The hosts and roles keyword arguments to
execute are analogous to CLI per-task arguments, including how they override all other host/role-setting
methods.)

As an example, here’s a fabfile defining two stand-alone tasks for deploying a
Web application:

from fabric.api import run, roles

env.roledefs = {
 'db': ['db1', 'db2'],
 'web': ['web1', 'web2', 'web3'],
}

@roles('db')
def migrate():
 # Database stuff here.
 pass

@roles('web')
def update():
 # Code updates here.
 pass

In Fabric <=1.2, the only way to ensure that migrate runs on the DB servers
and that update runs on the Web servers (short of manual
env.host_string manipulation) was to call both as top level tasks:

$ fab migrate update

Fabric >=1.3 can use execute to set up a meta-task. Update the
import line like so:

from fabric.api import run, roles, execute

and append this to the bottom of the file:

def deploy():
 execute(migrate)
 execute(update)

That’s all there is to it; the roles decorators will be honored as expected, resulting in the following execution sequence:

	migrate on db1

	migrate on db2

	update on web1

	update on web2

	update on web3

Warning

This technique works because tasks that themselves have no host list (this
includes the global host list settings) only run one time. If used inside a
“regular” task that is going to run on multiple hosts, calls to
execute will also run multiple times, resulting in
multiplicative numbers of subtask calls – be careful!

See also

execute

Failure handling

Once the task list has been constructed, Fabric will start executing them as
outlined in Execution strategy, until all tasks have been run on the
entirety of their host lists. However, Fabric defaults to a “fail-fast”
behavior pattern: if anything goes wrong, such as a remote program returning a
nonzero return value or your fabfile’s Python code encountering an exception,
execution will halt immediately.

This is typically the desired behavior, but there are many exceptions to the
rule, so Fabric provides env.warn_only, a Boolean setting. It defaults to
False, meaning an error condition will result in the program aborting
immediately. However, if env.warn_only is set to True at the time of
failure – with, say, the settings context
manager – Fabric will emit a warning message but continue executing.

Connections

fab itself doesn’t actually make any connections to remote hosts. Instead,
it simply ensures that for each distinct run of a task on one of its hosts, the
env var env.host_string is set to the right value. Users wanting to
leverage Fabric as a library may do so manually to achieve similar effects
(though as of Fabric 1.3, using execute is preferred and more
powerful.)

env.host_string is (as the name implies) the “current” host string, and is
what Fabric uses to determine what connections to make (or re-use) when
network-aware functions are run. Operations like run or
put use env.host_string as a lookup key in a shared
dictionary which maps host strings to SSH connection objects.

Note

The connections dictionary (currently located at
fabric.state.connections) acts as a cache, opting to return previously
created connections if possible in order to save some overhead, and
creating new ones otherwise.

Lazy connections

Because connections are driven by the individual operations, Fabric will not
actually make connections until they’re necessary. Take for example this task
which does some local housekeeping prior to interacting with the remote
server:

from fabric.api import *

@hosts('host1')
def clean_and_upload():
 local('find assets/ -name "*.DS_Store" -exec rm '{}' \;')
 local('tar czf /tmp/assets.tgz assets/')
 put('/tmp/assets.tgz', '/tmp/assets.tgz')
 with cd('/var/www/myapp/'):
 run('tar xzf /tmp/assets.tgz')

What happens, connection-wise, is as follows:

	The two local calls will run without making any network
connections whatsoever;

	put asks the connection cache for a connection to
host1;

	The connection cache fails to find an existing connection for that host
string, and so creates a new SSH connection, returning it to
put;

	put uploads the file through that connection;

	Finally, the run call asks the cache for a connection
to that same host string, and is given the existing, cached connection for
its own use.

Extrapolating from this, you can also see that tasks which don’t use any
network-borne operations will never actually initiate any connections (though
they will still be run once for each host in their host list, if any.)

Closing connections

Fabric’s connection cache never closes connections itself – it leaves this up
to whatever is using it. The fab tool does this bookkeeping for
you: it iterates over all open connections and closes them just before it exits
(regardless of whether the tasks failed or not.)

Library users will need to ensure they explicitly close all open connections
before their program exits. This can be accomplished by calling
disconnect_all at the end of your script.

Note

disconnect_all may be moved to a more public location in
the future; we’re still working on making the library aspects of Fabric
more solidified and organized.

Multiple connection attempts and skipping bad hosts

As of Fabric 1.4, multiple attempts may be made to connect to remote servers
before aborting with an error: Fabric will try connecting
env.connection_attempts times before giving up,
with a timeout of env.timeout seconds each time. (These
currently default to 1 try and 10 seconds, to match previous behavior, but they
may be safely changed to whatever you need.)

Furthermore, even total failure to connect to a server is no longer an absolute
hard stop: set env.skip_bad_hosts to True and in
most situations (typically initial connections) Fabric will simply warn and
continue, instead of aborting.

New in version 1.4.

Password management

Fabric maintains an in-memory, two-tier password cache to help remember your
login and sudo passwords in certain situations; this helps avoid tedious
re-entry when multiple systems share the same password [1], or if a remote
system’s sudo configuration doesn’t do its own caching.

The first layer is a simple default or fallback password cache,
env.password. This env var stores a single password which (if
non-empty) will be tried in the event that the host-specific cache (see below)
has no entry for the current host string.

env.passwords (plural!) serves as a per-user/per-host cache,
storing the most recently entered password for every unique user/host/port
combination. Due to this cache, connections to multiple different users and/or
hosts in the same session will only require a single password entry for each.
(Previous versions of Fabric used only the single, default password cache and
thus required password re-entry every time the previously entered password
became invalid.)

Depending on your configuration and the number of hosts your session will
connect to, you may find setting either or both of these env vars to be useful.
However, Fabric will automatically fill them in as necessary without any
additional configuration.

Specifically, each time a password prompt is presented to the user, the value
entered is used to update both the single default password cache, and the cache
value for the current value of env.host_string.

	[1]	We highly recommend the use of SSH key-based access [http://en.wikipedia.org/wiki/Public_key] instead of relying on
homogeneous password setups, as it’s significantly more secure.

Leveraging native SSH config files

Command-line SSH clients (such as the one provided by OpenSSH [http://openssh.org]) make use of a specific configuration format typically
known as ssh_config, and will read from a file in the platform-specific
location $HOME/.ssh/config (or an arbitrary path given to
--ssh-config-path/env.ssh_config_path.) This
file allows specification of various SSH options such as default or per-host
usernames, hostname aliases, and toggling other settings (such as whether to
use agent forwarding.)

Fabric’s SSH implementation allows loading a subset of these options from one’s
actual SSH config file, should it exist. This behavior is not enabled by
default (in order to be backwards compatible) but may be turned on by setting
env.use_ssh_config to True at the top of your
fabfile.

If enabled, the following SSH config directives will be loaded and honored by Fabric:

	User and Port will be used to fill in the appropriate connection
parameters when not otherwise specified, in the following fashion:
	Globally specified User/Port will be used in place of the current
defaults (local username and 22, respectively) if the appropriate env vars
are not set.

	However, if env.user/env.port are set, they
override global User/Port values.

	User/port values in the host string itself (e.g. hostname:222) will
override everything, including any ssh_config values.

	HostName can be used to replace the given hostname, just like with
regular ssh. So a Host foo entry specifying HostName example.com
will allow you to give Fabric the hostname 'foo' and have that expanded
into 'example.com' at connection time.

	IdentityFile will append to (not replace) env.key_filename.

	ForwardAgent will augment env.forward_agent in an
“OR” manner: if either is set to a positive value, agent forwarding will be
enabled.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

fab options and arguments

The most common method for utilizing Fabric is via its command-line tool,
fab, which should have been placed on your shell’s executable path when
Fabric was installed. fab tries hard to be a good Unix citizen, using a
standard style of command-line switches, help output, and so forth.

Basic use

In its most simple form, fab may be called with no options at all, and
with one or more arguments, which should be task names, e.g.:

$ fab task1 task2

As detailed in Overview and Tutorial and Execution model, this will run task1
followed by task2, assuming that Fabric was able to find a fabfile nearby
containing Python functions with those names.

However, it’s possible to expand this simple usage into something more
flexible, by using the provided options and/or passing arguments to individual
tasks.

Arbitrary remote shell commands

New in version 0.9.2.

Fabric leverages a lesser-known command line convention and may be called in
the following manner:

$ fab [options] -- [shell command]

where everything after the -- is turned into a temporary
run call, and is not parsed for fab options. If you’ve
defined a host list at the module level or on the command line, this usage will
act like a one-line anonymous task.

For example, let’s say you just wanted to get the kernel info for a bunch of
systems; you could do this:

$ fab -H system1,system2,system3 -- uname -a

which would be literally equivalent to the following fabfile:

from fabric.api import run

def anonymous():
 run("uname -a")

as if it were executed thusly:

$ fab -H system1,system2,system3 anonymous

Most of the time you will want to just write out the task in your fabfile
(anything you use once, you’re likely to use again) but this feature provides a
handy, fast way to quickly dash off an SSH-borne command while leveraging your
fabfile’s connection settings.

Command-line options

A quick overview of all possible command line options can be found via fab
--help. If you’re looking for details on a specific option, we go into detail
below.

Note

fab uses Python’s optparse [http://docs.python.org/library/optparse.html] library, meaning that it honors typical
Linux or GNU style short and long options, as well as freely mixing options
and arguments. E.g. fab task1 -H hostname task2 -i path/to/keyfile is
just as valid as the more straightforward fab -H hostname -i
path/to/keyfile task1 task2.

	
-a, --no_agent

	Sets env.no_agent to True, forcing our SSH layer not
to talk to the SSH agent when trying to unlock private key files.

New in version 0.9.1.

	
-A, --forward-agent

	Sets env.forward_agent to True, enabling agent
forwarding.

New in version 1.4.

	
--abort-on-prompts

	Sets env.abort_on_prompts to True, forcing
Fabric to abort whenever it would prompt for input.

New in version 1.1.

	
-c RCFILE, --config=RCFILE

	Sets env.rcfile to the given file path, which Fabric will
try to load on startup and use to update environment variables.

	
-d COMMAND, --display=COMMAND

	Prints the entire docstring for the given task, if there is one. Does not
currently print out the task’s function signature, so descriptive
docstrings are a good idea. (They’re always a good idea, of course –
just moreso here.)

	
--connection-attempts=M, -n M

	Set number of times to attempt connections. Sets
env.connection_attempts.

See also

env.connection_attempts,
env.timeout

New in version 1.4.

	
-D, --disable-known-hosts

	Sets env.disable_known_hosts to True,
preventing Fabric from loading the user’s SSH known_hosts file.

	
-f FABFILE, --fabfile=FABFILE

	The fabfile name pattern to search for (defaults to fabfile.py), or
alternately an explicit file path to load as the fabfile (e.g.
/path/to/my/fabfile.py.)

See also

Fabfile construction and use

	
-F LIST_FORMAT, --list-format=LIST_FORMAT

	Allows control over the output format of --list. short is
equivalent to --shortlist, normal is the same as simply
omitting this option entirely (i.e. the default), and nested prints out
a nested namespace tree.

New in version 1.1.

See also

--shortlist, --list

	
-h, --help

	Displays a standard help message, with all possible options and a brief
overview of what they do, then exits.

	
--hide=LEVELS

	A comma-separated list of output levels to hide by
default.

	
-H HOSTS, --hosts=HOSTS

	Sets env.hosts to the given comma-delimited list of host
strings.

	
-x HOSTS, --exclude-hosts=HOSTS

	Sets env.exclude_hosts to the given comma-delimited
list of host strings to then keep out of the final host list.

New in version 1.1.

	
-i KEY_FILENAME

	When set to a file path, will load the given file as an SSH identity file
(usually a private key.) This option may be repeated multiple times. Sets
(or appends to) env.key_filename.

	
-k

	Sets env.no_keys to True, forcing the SSH layer to not
look for SSH private key files in one’s home directory.

New in version 0.9.1.

	
--keepalive=KEEPALIVE

	Sets env.keepalive to the given (integer) value, specifying an SSH keepalive interval.

New in version 1.1.

	
--linewise

	Forces output to be buffered line-by-line instead of byte-by-byte. Often useful or required for parallel execution.

New in version 1.3.

	
-l, --list

	Imports a fabfile as normal, but then prints a list of all discovered tasks
and exits. Will also print the first line of each task’s docstring, if it
has one, next to it (truncating if necessary.)

Changed in version 0.9.1: Added docstring to output.

See also

--shortlist, --list-format

	
-p PASSWORD, --password=PASSWORD

	Sets env.password to the given string; it will then be
used as the default password when making SSH connections or calling the
sudo program.

	
-P, --parallel

	Sets env.parallel to True, causing
tasks to run in parallel.

New in version 1.3.

See also

Parallel execution

	
--no-pty

	Sets env.always_use_pty to False, causing all
run/sudo calls to behave as if
one had specified pty=False.

New in version 1.0.

	
-r, --reject-unknown-hosts

	Sets env.reject_unknown_hosts to True,
causing Fabric to abort when connecting to hosts not found in the user’s SSH
known_hosts file.

	
-R ROLES, --roles=ROLES

	Sets env.roles to the given comma-separated list of role
names.

	
--set KEY=VALUE,...

	Allows you to set default values for arbitrary Fabric env vars. Values set
this way have a low precedence – they will not override more specific env
vars which are also specified on the command line. E.g.:

fab --set password=foo --password=bar

will result in env.password = 'bar', not 'foo'

Multiple KEY=VALUE pairs may be comma-separated, e.g. fab --set
var1=val1,var2=val2.

Other than basic string values, you may also set env vars to True by
omitting the =VALUE (e.g. fab --set KEY), and you may set values to
the empty string (and thus a False-equivalent value) by keeping the equals
sign, but omitting VALUE (e.g. fab --set KEY=.)

New in version 1.4.

	
-s SHELL, --shell=SHELL

	Sets env.shell to the given string, overriding the default
shell wrapper used to execute remote commands.

	
--shortlist

	Similar to --list, but without any embellishment, just task
names separated by newlines with no indentation or docstrings.

New in version 0.9.2.

See also

--list

	
--show=LEVELS

	A comma-separated list of output levels to
be added to those that are shown by
default.

See also

run, sudo

	
--ssh-config-path

	Sets env.ssh_config_path.

New in version 1.4.

See also

Leveraging native SSH config files

	
--skip-bad-hosts

	Sets env.skip_bad_hosts, causing Fabric to skip
unavailable hosts.

New in version 1.4.

	
--timeout=N, -t N

	Set connection timeout in seconds. Sets env.timeout.

See also

env.timeout,
env.connection_attempts

New in version 1.4.

	
-u USER, --user=USER

	Sets env.user to the given string; it will then be used as the
default username when making SSH connections.

	
-V, --version

	Displays Fabric’s version number, then exits.

	
-w, --warn-only

	Sets env.warn_only to True, causing Fabric to
continue execution even when commands encounter error conditions.

	
-z, --pool-size

	Sets env.pool_size, which specifies how many processes
to run concurrently during parallel execution.

New in version 1.3.

See also

Parallel execution

Per-task arguments

The options given in Command-line options apply to the invocation of
fab as a whole; even if the order is mixed around, options still apply to
all given tasks equally. Additionally, since tasks are just Python functions,
it’s often desirable to pass in arguments to them at runtime.

Answering both these needs is the concept of “per-task arguments”, which is a
special syntax you can tack onto the end of any task name:

	Use a colon (:) to separate the task name from its arguments;

	Use commas (,) to separate arguments from one another (may be escaped
by using a backslash, i.e. \,);

	Use equals signs (=) for keyword arguments, or omit them for positional
arguments. May also be escaped with backslashes.

Additionally, since this process involves string parsing, all values will end
up as Python strings, so plan accordingly. (We hope to improve upon this in
future versions of Fabric, provided an intuitive syntax can be found.)

For example, a “create a new user” task might be defined like so (omitting most
of the actual logic for brevity):

def new_user(username, admin='no', comment="No comment provided"):
 log_action("New User (%s): %s" % (username, comment))
 pass

You can specify just the username:

$ fab new_user:myusername

Or treat it as an explicit keyword argument:

$ fab new_user:username=myusername

If both args are given, you can again give them as positional args:

$ fab new_user:myusername,yes

Or mix and match, just like in Python:

$ fab new_user:myusername,admin=yes

The log_action call above is useful for illustrating escaped commas, like
so:

$ fab new_user:myusername,admin=no,comment='Gary\, new developer (starts Monday)'

Note

Quoting the backslash-escaped comma is required, as not doing so will cause
shell syntax errors. Quotes are also needed whenever an argument involves
other shell-related characters such as spaces.

All of the above are translated into the expected Python function calls. For
example, the last call above would become:

>>> new_user('myusername', admin='yes', comment='Gary, new developer (starts Monday)')

Roles and hosts

As mentioned in the section on task execution,
there are a handful of per-task keyword arguments (host, hosts,
role and roles) which do not actually map to the task functions
themselves, but are used for setting per-task host and/or role lists.

These special kwargs are removed from the args/kwargs sent to the task
function itself; this is so that you don’t run into TypeErrors if your task
doesn’t define the kwargs in question. (It also means that if you do define
arguments with these names, you won’t be able to specify them in this manner –
a regrettable but necessary sacrifice.)

Note

If both the plural and singular forms of these kwargs are given, the value
of the plural will win out and the singular will be discarded.

When using the plural form of these arguments, one must use semicolons (;)
since commas are already being used to separate arguments from one another.
Furthermore, since your shell is likely to consider semicolons a special
character, you’ll want to quote the host list string to prevent shell
interpretation, e.g.:

$ fab new_user:myusername,hosts="host1;host2"

Again, since the hosts kwarg is removed from the argument list sent to the
new_user task function, the actual Python invocation would be
new_user('myusername'), and the function would be executed on a host list
of ['host1', 'host2'].

Settings files

Fabric currently honors a simple user settings file, or fabricrc (think
bashrc but for fab) which should contain one or more key-value pairs,
one per line. These lines will be subject to string.split('='), and thus
can currently only be used to specify string settings. Any such key-value pairs
will be used to update env when fab runs, and is loaded prior
to the loading of any fabfile.

By default, Fabric looks for ~/.fabricrc, and this may be overridden by
specifying the -c flag to fab.

For example, if your typical SSH login username differs from your workstation
username, and you don’t want to modify env.user in a project’s fabfile
(possibly because you expect others to use it as well) you could write a
fabricrc file like so:

user = ssh_user_name

Then, when running fab, your fabfile would load up with env.user set to
'ssh_user_name'. Other users of that fabfile could do the same, allowing
the fabfile itself to be cleanly agnostic regarding the default username.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Fabfile construction and use

This document contains miscellaneous sections about fabfiles, both how to best
write them, and how to use them once written.

Fabfile discovery

Fabric is capable of loading Python modules (e.g. fabfile.py) or packages
(e.g. a fabfile/ directory containing an __init__.py). By default, it
looks for something named either fabfile or fabfile.py.

The fabfile discovery algorithm searches in the invoking user’s current working
directory or any parent directories. Thus, it is oriented around “project” use,
where one keeps e.g. a fabfile.py at the root of a source code tree. Such a
fabfile will then be discovered no matter where in the tree the user invokes
fab.

The specific name to be searched for may be overridden on the command-line with
the -f option, or by adding a fabricrc line which
sets the value of fabfile. For example, if you wanted to name your fabfile
fab_tasks.py, you could create such a file and then call fab -f
fab_tasks.py <task name>, or add fabfile = fab_tasks.py to
~/.fabricrc.

If the given fabfile name contains path elements other than a filename (e.g.
../fabfile.py or /dir1/dir2/custom_fabfile) it will be treated as a
file path and directly checked for existence without any sort of searching.
When in this mode, tilde-expansion will be applied, so one may refer to e.g.
~/personal_fabfile.py.

Note

Fabric does a normal import (actually an __import__) of your
fabfile in order to access its contents – it does not do any eval-ing
or similar. In order for this to work, Fabric temporarily adds the found
fabfile’s containing folder to the Python load path (and removes it
immediately afterwards.)

Changed in version 0.9.2: The ability to load package fabfiles.

Importing Fabric

Because Fabric is just Python, you can import its components any way you
want. However, for the purposes of encapsulation and convenience (and to make
life easier for Fabric’s packaging script) Fabric’s public API is maintained in
the fabric.api module.

All of Fabric’s Operations,
Context Managers, Decorators and
Utils are included in this module as a single, flat
namespace. This enables a very simple and consistent interface to Fabric within
your fabfiles:

from fabric.api import *

call run(), sudo(), etc etc

This is not technically best practices (for a
number of reasons [http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html#importing]) and if you’re only using a couple of
Fab API calls, it is probably a good idea to explicitly from fabric.api
import env, run or similar. However, in most nontrivial fabfiles, you’ll be
using all or most of the API, and the star import:

from fabric.api import *

will be a lot easier to write and read than:

from fabric.api import abort, cd, env, get, hide, hosts, local, prompt, \
 put, require, roles, run, runs_once, settings, show, sudo, warn

so in this case we feel pragmatism overrides best practices.

Defining tasks and importing callables

For important information on what exactly Fabric will consider as a task when
it loads your fabfile, as well as notes on how best to import other code,
please see Defining tasks in the Execution model documentation.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Interaction with remote programs

Fabric’s primary operations, run and
sudo, are capable of sending local input to the remote
end, in a manner nearly identical to the ssh program. For example, programs
which display password prompts (e.g. a database dump utility, or changing a
user’s password) will behave just as if you were interacting with them
directly.

However, as with ssh itself, Fabric’s implementation of this feature is
subject to a handful of limitations which are not always intuitive. This
document discusses such issues in detail.

Note

Readers unfamiliar with the basics of Unix stdout and stderr pipes, and/or
terminal devices, may wish to visit the Wikipedia pages for Unix pipelines [http://en.wikipedia.org/wiki/Pipe_(Unix)] and Pseudo terminals [http://en.wikipedia.org/wiki/Pseudo_terminal] respectively.

Combining stdout and stderr

The first issue to be aware of is that of the stdout and stderr streams, and
why they are separated or combined as needed.

Buffering

Fabric 0.9.x and earlier, and Python itself, buffer output on a line-by-line
basis: text is not printed to the user until a newline character is found.
This works fine in most situations but becomes problematic when one needs to
deal with partial-line output such as prompts.

Note

Line-buffered output can make programs appear to halt or freeze for no
reason, as prompts print out text without a newline, waiting for the user
to enter their input and press Return.

Newer Fabric versions buffer both input and output on a character-by-character
basis in order to make interaction with prompts possible. This has the
convenient side effect of enabling interaction with complex programs utilizing
the “curses” libraries or which otherwise redraw the screen (think top).

Crossing the streams

Unfortunately, printing to stderr and stdout simultaneously (as many programs
do) means that when the two streams are printed independently one byte at a
time, they can become garbled or meshed together. While this can sometimes be
mitigated by line-buffering one of the streams and not the other, it’s still a
serious issue.

To solve this problem, Fabric uses a setting in our SSH layer which merges the
two streams at a low level and causes output to appear more naturally. This
setting is represented in Fabric as the combine_stderr env var and
keyword argument, and is True by default.

Due to this default setting, output will appear correctly, but at the
cost of an empty .stderr attribute on the return values of
run/sudo, as all output will appear
to be stdout.

Conversely, users requiring a distinct stderr stream at the Python level and
who aren’t bothered by garbled user-facing output (or who are hiding stdout and
stderr from the command in question) may opt to set this to False as
needed.

Pseudo-terminals

The other main issue to consider when presenting interactive prompts to users
is that of echoing the user’s own input.

Echoes

Typical terminal applications or bona fide text terminals (e.g. when using a
Unix system without a running GUI) present programs with a terminal device
called a tty or pty (for pseudo-terminal). These automatically echo all text
typed into them back out to the user (via stdout), as interaction without
seeing what you had just typed would be difficult. Terminal devices are also
able to conditionally turn off echoing, allowing secure password prompts.

However, it’s possible for programs to be run without a tty or pty present at
all (consider cron jobs, for example) and in this situation, any stdin data
being fed to the program won’t be echoed. This is desirable for programs being
run without any humans around, and it’s also Fabric’s old default mode of
operation.

Fabric’s approach

Unfortunately, in the context of executing commands via Fabric, when no pty is
present to echo a user’s stdin, Fabric must echo it for them. This is
sufficient for many applications, but it presents problems for password
prompts, which become insecure.

In the interests of security and meeting the principle of least surprise
(insofar as users are typically expecting things to behave as they would when
run in a terminal emulator), Fabric 1.0 and greater force a pty by default.
With a pty enabled, Fabric simply allows the remote end to handle echoing or
hiding of stdin and does not echo anything itself.

Note

In addition to allowing normal echo behavior, a pty also means programs
that behave differently when attached to a terminal device will then do so.
For example, programs that colorize output on terminals but not when run in
the background will print colored output. Be wary of this if you inspect
the return value of run or sudo!

For situations requiring the pty behavior turned off, the --no-pty
command-line argument and always_use_pty env var may be used.

Combining the two

As a final note, keep in mind that use of pseudo-terminals effectively implies
combining stdout and stderr – in much the same way as the combine_stderr setting does. This is because a terminal device naturally
sends both stdout and stderr to the same place – the user’s display – thus
making it impossible to differentiate between them.

However, at the Fabric level, the two groups of settings are distinct from one
another and may be combined in various ways. The default is for both to be set
to True; the other combinations are as follows:

	run("cmd", pty=False, combine_stderr=True): will cause Fabric to echo all
stdin itself, including passwords, as well as potentially altering cmd‘s
behavior. Useful if cmd behaves undesirably when run under a pty and
you’re not concerned about password prompts.

	run("cmd", pty=False, combine_stderr=False): with both settings
False, Fabric will echo stdin and won’t issue a pty – and this is highly
likely to result in undesired behavior for all but the simplest commands.
However, it is also the only way to access a distinct stderr stream, which is
occasionally useful.

	run("cmd", pty=True, combine_stderr=False): valid, but won’t really make
much of a difference, as pty=True will still result in merged streams.
May be useful for avoiding any edge case problems in combine_stderr (none
are presently known).

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Library Use

Fabric’s primary use case is via fabfiles and the fab tool,
and this is reflected in much of the documentation. However, Fabric’s internals
are written in such a manner as to be easily used without fab or fabfiles
at all – this document will show you how.

There’s really only a couple of considerations one must keep in mind, when
compared to writing a fabfile and using fab to run it: how connections are
really made, and how disconnections occur.

Connections

We’ve documented how Fabric really connects to its hosts before, but it’s
currently somewhat buried in the middle of the overall execution docs. Specifically, you’ll want to skip over to the
Connections section and read it real quick. (You should really give that
entire document a once-over, but it’s not absolutely required.)

As that section mentions, the key is simply that run,
sudo and the other operations only look in one place when
connecting: env.host_string. All of the other mechanisms
for setting hosts are interpreted by the fab tool when it runs, and don’t
matter when running as a library.

That said, most use cases where you want to marry a given task X and a given list of hosts Y can, as of Fabric 1.3, be handled with the execute function via execute(X, hosts=Y). Please see execute‘s documentation for details – manual host string manipulation should be rarely necessary.

Disconnecting

The other main thing that fab does for you is to disconnect from all hosts
at the end of a session; otherwise, Python will sit around forever waiting for
those network resources to be released.

Fabric 0.9.4 and newer have a function you can use to do this easily:
disconnect_all. Simply make sure your code calls this when it
terminates (typically in the finally clause of an outer try: finally
statement – lest errors in your code prevent disconnections from happening!)
and things ought to work pretty well.

If you’re on Fabric 0.9.3 or older, you can simply do this (disconnect_all
just adds a bit of nice output to this logic):

from fabric.state import connections

for key in connections.keys():
 connections[key].close()
 del connections[key]

Final note

This document is an early draft, and may not cover absolutely every difference
between fab use and library use. However, the above should highlight the
largest stumbling blocks. When in doubt, note that in the Fabric source code,
fabric/main.py contains the bulk of the extra work done by fab, and may
serve as a useful reference.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Managing output

The fab tool is very verbose by default and prints out almost everything it
can, including the remote end’s stderr and stdout streams, the command strings
being executed, and so forth. While this is necessary in many cases in order to
know just what’s going on, any nontrivial Fabric task will quickly become
difficult to follow as it runs.

Output levels

To aid in organizing task output, Fabric output is grouped into a number of
non-overlapping levels or groups, each of which may be turned on or off
independently. This provides flexible control over what is displayed to the
user.

Note

All levels, save for debug, are on by default.

Standard output levels

The standard, atomic output levels/groups are as follows:

	status: Status messages, i.e. noting when Fabric is done running, if
the user used a keyboard interrupt, or when servers are disconnected from.
These messages are almost always relevant and rarely verbose.

	aborts: Abort messages. Like status messages, these should really only be
turned off when using Fabric as a library, and possibly not even then. Note
that even if this output group is turned off, aborts will still occur –
there just won’t be any output about why Fabric aborted!

	warnings: Warning messages. These are often turned off when one expects a
given operation to fail, such as when using grep to test existence of
text in a file. If paired with setting env.warn_only to True, this
can result in fully silent warnings when remote programs fail. As with
aborts, this setting does not control actual warning behavior, only
whether warning messages are printed or hidden.

	running: Printouts of commands being executed or files transferred, e.g.
[myserver] run: ls /var/www. Also controls printing of tasks being run,
e.g. [myserver] Executing task 'foo'.

	stdout: Local, or remote, stdout, i.e. non-error output from commands.

	stderr: Local, or remote, stderr, i.e. error-related output from commands.

	user: User-generated output, i.e. local output printed by fabfile code
via use of the fastprint or puts functions.

Changed in version 0.9.2: Added “Executing task” lines to the running output level.

Changed in version 0.9.2: Added the user output level.

Debug output

There is a final atomic output level, debug, which behaves slightly
differently from the rest:

	debug: Turn on debugging (which is off by default.) Currently, this is
largely used to view the “full” commands being run; take for example this
run call:

run('ls "/home/username/Folder Name With Spaces/"')

Normally, the running line will show exactly what is passed into
run, like so:

[hostname] run: ls "/home/username/Folder Name With Spaces/"

With debug on, and assuming you’ve left shell set to True, you
will see the literal, full string as passed to the remote server:

[hostname] run: /bin/bash -l -c "ls \"/home/username/Folder Name With Spaces\""

Enabling debug output will also display full Python tracebacks during
aborts.

Note

Where modifying other pieces of output (such as in the above example
where it modifies the ‘running’ line to show the shell and any escape
characters), this setting takes precedence over the others; so if
running is False but debug is True, you will still be shown the
‘running’ line in its debugging form.

Changed in version 1.0: Debug output now includes full Python tracebacks during aborts.

Output level aliases

In addition to the atomic/standalone levels above, Fabric also provides a
couple of convenience aliases which map to multiple other levels. These may be
referenced anywhere the other levels are referenced, and will effectively
toggle all of the levels they are mapped to.

	output: Maps to both stdout and stderr. Useful for when you only
care to see the ‘running’ lines and your own print statements (and warnings).

	everything: Includes warnings, running, user and output
(see above.) Thus, when turning off everything, you will only see a bare
minimum of output (just status and debug if it’s on), along with your
own print statements.

	commands: Includes stdout and running. Good for hiding
non-erroring commands entirely, while still displaying any stderr output.

Changed in version 1.4: Added the commands output alias.

Hiding and/or showing output levels

You may toggle any of Fabric’s output levels in a number of ways; for examples,
please see the API docs linked in each bullet point:

	Direct modification of fabric.state.output: fabric.state.output is a
dictionary subclass (similar to env) whose keys are the output
level names, and whose values are either True (show that particular type of
output) or False (hide it.)

fabric.state.output is the lowest-level implementation of output levels and
is what Fabric’s internals reference when deciding whether or not to print
their output.

	Context managers: hide and
show are twin context managers that take one or
more output level names as strings, and either hide or show them within the
wrapped block. As with Fabric’s other context managers, the prior values are
restored when the block exits.

See also

settings, which can nest calls to
hide and/or show
inside itself.

	Command-line arguments: You may use the --hide and/or
--show arguments to fab options and arguments, which behave exactly like the
context managers of the same names (but are, naturally, globally applied) and
take comma-separated strings as input.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Parallel execution

New in version 1.3.

By default, Fabric executes all specified tasks serially (see
Execution strategy for details.) This document describes Fabric’s
options for running tasks on multiple hosts in parallel, via per-task
decorators and/or global command-line switches.

What it does

Because Fabric 1.x is not fully threadsafe (and because in general use, task
functions do not typically interact with one another) this functionality is
implemented via the Python multiprocessing [http://docs.python.org/library/multiprocessing.html] module. It creates one
new process for each host and task combination, optionally using a
(configurable) sliding window to prevent too many processes from running at the
same time.

For example, imagine a scenario where you want to update Web application code
on a number of Web servers, and then reload the servers once the code has been
distributed everywhere (to allow for easier rollback if code updates fail.) One
could implement this with the following fabfile:

from fabric.api import *

def update():
 with cd("/srv/django/myapp"):
 run("git pull")

def reload():
 sudo("service apache2 reload")

and execute it on a set of 3 servers, in serial, like so:

$ fab -H web1,web2,web3 update reload

Normally, without any parallel execution options activated, Fabric would run
in order:

	update on web1

	update on web2

	update on web3

	reload on web1

	reload on web2

	reload on web3

With parallel execution activated (via -P – see below for details),
this turns into:

	update on web1, web2, and web3

	reload on web1, web2, and web3

Hopefully the benefits of this are obvious – if update took 5 seconds to
run and reload took 2 seconds, serial execution takes (5+2)*3 = 21 seconds
to run, while parallel execution takes only a third of the time, (5+2) = 7
seconds on average.

How to use it

Decorators

Since the minimum “unit” that parallel execution affects is a task, the
functionality may be enabled or disabled on a task-by-task basis using the
parallel and serial decorators. For
example, this fabfile:

from fabric.api import *

@parallel
def runs_in_parallel():
 pass

def runs_serially():
 pass

when run in this manner:

$ fab -H host1,host2,host3 runs_in_parallel runs_serially

will result in the following execution sequence:

	runs_in_parallel on host1, host2, and host3

	runs_serially on host1

	runs_serially on host2

	runs_serially on host3

Command-line flags

One may also force all tasks to run in parallel by using the command-line flag
-P or the env variable env.parallel. However,
any task specifically wrapped with serial will ignore this
setting and continue to run serially.

For example, the following fabfile will result in the same execution sequence
as the one above:

from fabric.api import *

def runs_in_parallel():
 pass

@serial
def runs_serially():
 pass

when invoked like so:

$ fab -H host1,host2,host3 -P runs_in_parallel runs_serially

As before, runs_in_parallel will run in parallel, and runs_serially in
sequence.

Bubble size

With large host lists, a user’s local machine can get overwhelmed by running
too many concurrent Fabric processes. Because of this, you may opt to use a
moving bubble approach that limits Fabric to a specific number of concurrently
active processes.

By default, no bubble is used and all hosts are run in one concurrent pool. You
can override this on a per-task level by specifying the pool_size keyword
argument to parallel, or globally via -z.

For example, to run on 5 hosts at a time:

from fabric.api import *

@parallel(pool_size=5)
def heavy_task():
 # lots of heavy local lifting or lots of IO here

Or skip the pool_size kwarg and instead:

$ fab -P -z 5 heavy_task

Linewise vs bytewise output

Fabric’s default mode of printing to the terminal is byte-by-byte, in order to
support Interaction with remote programs. This often gives poor results when running
in parallel mode, as the multiple processes may write to your terminal’s
standard out stream simultaneously.

To help offset this problem, Fabric’s option for linewise output is
automatically enabled whenever parallelism is active. This will cause you to
lose most of the benefits outlined in the above link Fabric’s remote
interactivity features, but as those do not map well to parallel invocations,
it’s typically a fair trade.

There’s no way to avoid the multiple processes mixing up on a line-by-line
basis, but you will at least be able to tell them apart by the host-string line
prefix.

Note

Future versions will add improved logging support to make troubleshooting
parallel runs easier.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

SSH behavior

Fabric currently makes use of a pure-Python SSH re-implementation for managing
connections, meaning that there are occasionally spots where it is limited by
that library’s capabilities. Below are areas of note where Fabric will exhibit
behavior that isn’t consistent with, or as flexible as, the behavior of the
ssh command-line program.

Unknown hosts

SSH’s host key tracking mechanism keeps tabs on all the hosts you attempt to
connect to, and maintains a ~/.ssh/known_hosts file with mappings between
identifiers (IP address, sometimes with a hostname as well) and SSH keys. (For
details on how this works, please see the OpenSSH documentation [http://openssh.org/manual.html].)

The ssh library is capable of loading up your known_hosts file, and
will then compare any host it connects to, with that mapping. Settings are
available to determine what happens when an unknown host (a host whose username
or IP is not found in known_hosts) is seen:

	Reject: the host key is rejected and the connection is not made. This
results in a Python exception, which will terminate your Fabric session with a
message that the host is unknown.

	Add: the new host key is added to the in-memory list of known hosts, the
connection is made, and things continue normally. Note that this does not
modify your on-disk known_hosts file!

	Ask: not yet implemented at the Fabric level, this is an ssh library
option which would result in the user being prompted about the unknown key
and whether to accept it.

Whether to reject or add hosts, as above, is controlled in Fabric via the
env.reject_unknown_hosts option, which is False
by default for convenience’s sake. We feel this is a valid tradeoff between
convenience and security; anyone who feels otherwise can easily modify their
fabfiles at module level to set env.reject_unknown_hosts = True.

Known hosts with changed keys

The point of SSH’s key/fingerprint tracking is so that man-in-the-middle
attacks can be detected: if an attacker redirects your SSH traffic to a
computer under his control, and pretends to be your original destination
server, the host keys will not match. Thus, the default behavior of SSH (and
its Python implementation) is to immediately abort the connection when a host
previously recorded in known_hosts suddenly starts sending us a different
host key.

In some edge cases such as some EC2 deployments, you may want to ignore this
potential problem. Our SSH layer, at the time of writing, doesn’t give us
control over this exact behavior, but we can sidestep it by simply skipping the
loading of known_hosts – if the host list being compared to is empty, then
there’s no problem. Set env.disable_known_hosts to
True when you want this behavior; it is False by default, in order to preserve
default SSH behavior.

Warning

Enabling env.disable_known_hosts will leave
you wide open to man-in-the-middle attacks! Please use with caution.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Defining tasks

As of Fabric 1.1, there are two distinct methods you may use in order to define
which objects in your fabfile show up as tasks:

	The “new” method starting in 1.1 considers instances of Task
or its subclasses, and also descends into imported modules to allow building
nested namespaces.

	The “classic” method from 1.0 and earlier considers all public callable
objects (functions, classes etc) and only considers the objects in the
fabfile itself with no recursing into imported module.

Note

These two methods are mutually exclusive: if Fabric finds any
new-style task objects in your fabfile or in modules it imports, it will
assume you’ve committed to this method of task declaration and won’t
consider any non-Task callables. If no new-style tasks
are found, it reverts to the classic behavior.

The rest of this document explores these two methods in detail.

Note

To see exactly what tasks in your fabfile may be executed via fab, use
fab --list.

New-style tasks

Fabric 1.1 introduced the Task class to facilitate new features
and enable some programming best practices, specifically:

	Object-oriented tasks. Inheritance and all that comes with it can make
for much more sensible code reuse than passing around simple function
objects. The classic style of task declaration didn’t entirely rule this
out, but it also didn’t make it terribly easy.

	Namespaces. Having an explicit method of declaring tasks makes it easier
to set up recursive namespaces without e.g. polluting your task list with the
contents of Python’s os module (which would show up as valid “tasks”
under the classic methodology.)

With the introduction of Task, there are two ways to set up new
tasks:

	Decorate a regular module level function with @task, which transparently wraps the function in a
Task subclass. The function name will be used as the task
name when invoking.

	Subclass Task (Task itself is intended to be
abstract), define a run method, and instantiate your subclass at module
level. Instances’ name attributes are used as the task name; if omitted
the instance’s variable name will be used instead.

Use of new-style tasks also allows you to set up namespaces.

The @task decorator

The quickest way to make use of new-style task features is to wrap basic task functions with @task:

from fabric.api import task, run

@task
def mytask():
 run("a command")

When this decorator is used, it signals to Fabric that only functions wrapped in the decorator are to be loaded up as valid tasks. (When not present, classic-style task behavior kicks in.)

Arguments

@task may also be called with arguments to
customize its behavior. Any arguments not documented below are passed into the
constructor of the task_class being used, with the function itself as the
first argument (see Using custom subclasses with @task for details.)

	task_class: The Task subclass used to wrap the decorated
function. Defaults to WrappedCallableTask.

	aliases: An iterable of string names which will be used as aliases for
the wrapped function. See Aliases for details.

	alias: Like aliases but taking a single string argument instead of an
iterable. If both alias and aliases are specified, aliases will
take precedence.

	default: A boolean value determining whether the decorated task also
stands in for its containing module as a task name. See Default tasks.

Aliases

Here’s a quick example of using the alias keyword argument to facilitate
use of both a longer human-readable task name, and a shorter name which is
quicker to type:

from fabric.api import task

@task(alias='dwm')
def deploy_with_migrations():
 pass

Calling --list on this fabfile would show both the original
deploy_with_migrations and its alias dwm:

$ fab --list
Available commands:

 deploy_with_migrations
 dwm

When more than one alias for the same function is needed, simply swap in the
aliases kwarg, which takes an iterable of strings instead of a single
string.

Default tasks

In a similar manner to aliases, it’s sometimes useful to
designate a given task within a module as the “default” task, which may be
called by referencing just the module name. This can save typing and/or
allow for neater organization when there’s a single “main” task and a number
of related tasks or subroutines.

For example, a deploy submodule might contain tasks for provisioning new
servers, pushing code, migrating databases, and so forth – but it’d be very
convenient to highlight a task as the default “just deploy” action. Such a
deploy.py module might look like this:

from fabric.api import task

@task
def migrate():
 pass

@task
def push():
 pass

@task
def provision():
 pass

@task
def full_deploy():
 if not provisioned:
 provision()
 push()
 migrate()

With the following task list (assuming a simple top level fabfile.py that just imports deploy):

$ fab --list
Available commands:

 deploy.full_deploy
 deploy.migrate
 deploy.provision
 deploy.push

Calling deploy.full_deploy on every deploy could get kind of old, or somebody new to the team might not be sure if that’s really the right task to run.

Using the default kwarg to @task, we can tag
e.g. full_deploy as the default task:

@task(default=True)
def full_deploy():
 pass

Doing so updates the task list like so:

$ fab --list
Available commands:

 deploy
 deploy.full_deploy
 deploy.migrate
 deploy.provision
 deploy.push

Note that full_deploy still exists as its own explicit task – but now
deploy shows up as a sort of top level alias for full_deploy.

If multiple tasks within a module have default=True set, the last one to
be loaded (typically the one lowest down in the file) will take precedence.

Top-level default tasks

Using @task(default=True) in the top level fabfile will cause the denoted
task to execute when a user invokes fab without any task names (similar to
e.g. make.) When using this shortcut, it is not possible to specify
arguments to the task itself – use a regular invocation of the task if this
is necessary.

Task subclasses

If you’re used to classic-style tasks, an easy way to
think about Task subclasses is that their run method is
directly equivalent to a classic task; its arguments are the task arguments
(other than self) and its body is what gets executed.

For example, this new-style task:

class MyTask(Task):
 name = "deploy"
 def run(self, environment, domain="whatever.com"):
 run("git clone foo")
 sudo("service apache2 restart")

instance = MyTask()

is exactly equivalent to this function-based task:

@task
def deploy(environment, domain="whatever.com"):
 run("git clone foo")
 sudo("service apache2 restart")

Note how we had to instantiate an instance of our class; that’s simply normal
Python object-oriented programming at work. While it’s a small bit of
boilerplate right now – for example, Fabric doesn’t care about the name you
give the instantiation, only the instance’s name attribute – it’s well
worth the benefit of having the power of classes available.

We plan to extend the API in the future to make this experience a bit smoother.

Using custom subclasses with @task

It’s possible to marry custom Task subclasses with @task. This may be useful in cases where your core
execution logic doesn’t do anything class/object-specific, but you want to
take advantage of class metaprogramming or similar techniques.

Specifically, any Task subclass which is designed to take in a
callable as its first constructor argument (as the built-in
WrappedCallableTask does) may be specified as the
task_class argument to @task.

Fabric will automatically instantiate a copy of the given class, passing in
the wrapped function as the first argument. All other args/kwargs given to the
decorator (besides the “special” arguments documented in
Arguments) are added afterwards.

Here’s a brief and somewhat contrived example to make this obvious:

from fabric.api import task
from fabric.tasks import Task

class CustomTask(Task):
 def __init__(self, func, myarg, *args, **kwargs):
 super(CustomTask, self).__init__(*args, **kwargs)
 self.func = func
 self.myarg = myarg

 def run(self, *args, **kwargs):
 return self.func(*args, **kwargs)

@task(task_class=CustomTask, myarg='value', alias='at')
def actual_task():
 pass

When this fabfile is loaded, a copy of CustomTask is instantiated, effectively calling:

task_obj = CustomTask(actual_task, myarg='value')

Note how the alias kwarg is stripped out by the decorator itself and never
reaches the class instantiation; this is identical in function to how
command-line task arguments work.

Namespaces

With classic tasks, fabfiles were limited to a single,
flat set of task names with no real way to organize them. In Fabric 1.1 and
newer, if you declare tasks the new way (via @task
or your own Task subclass instances) you may take advantage
of namespacing:

	Any module objects imported into your fabfile will be recursed into, looking
for additional task objects.

	Within submodules, you may control which objects are “exported” by using the
standard Python __all__ module-level variable name (thought they should
still be valid new-style task objects.)

	These tasks will be given new dotted-notation names based on the modules they
came from, similar to Python’s own import syntax.

Let’s build up a fabfile package from simple to complex and see how this works.

Basic

We start with a single __init__.py containing a few tasks (the Fabric API
import omitted for brevity):

@task
def deploy():
 ...

@task
def compress():
 ...

The output of fab --list would look something like this:

deploy
compress

There’s just one namespace here: the “root” or global namespace. Looks simple
now, but in a real-world fabfile with dozens of tasks, it can get difficult to
manage.

Importing a submodule

As mentioned above, Fabric will examine any imported module objects for tasks,
regardless of where that module exists on your Python import path. For now we
just want to include our own, “nearby” tasks, so we’ll make a new submodule in
our package for dealing with, say, load balancers – lb.py:

@task
def add_backend():
 ...

And we’ll add this to the top of __init__.py:

import lb

Now fab --list shows us:

deploy
compress
lb.add_backend

Again, with only one task in its own submodule, it looks kind of silly, but the
benefits should be pretty obvious.

Going deeper

Namespacing isn’t limited to just one level. Let’s say we had a larger setup
and wanted a namespace for database related tasks, with additional
differentiation inside that. We make a sub-package named db/ and inside it,
a migrations.py module:

@task
def list():
 ...

@task
def run():
 ...

We need to make sure that this module is visible to anybody importing db,
so we add it to the sub-package’s __init__.py:

import migrations

As a final step, we import the sub-package into our root-level __init__.py,
so now its first few lines look like this:

import lb
import db

After all that, our file tree looks like this:

.
├── __init__.py
├── db
│ ├── __init__.py
│ └── migrations.py
└── lb.py

and fab --list shows:

deploy
compress
lb.add_backend
db.migrations.list
db.migrations.run

We could also have specified (or imported) tasks directly into
db/__init__.py, and they would show up as db.<whatever> as you might
expect.

Limiting with __all__

You may limit what Fabric “sees” when it examines imported modules, by using
the Python convention of a module level __all__ variable (a list of
variable names.) If we didn’t want the db.migrations.run task to show up by
default for some reason, we could add this to the top of db/migrations.py:

__all__ = ['list']

Note the lack of 'run' there. You could, if needed, import run directly
into some other part of the hierarchy, but otherwise it’ll remain hidden.

Switching it up

We’ve been keeping our fabfile package neatly organized and importing it in a
straightforward manner, but the filesystem layout doesn’t actually matter here.
All Fabric’s loader cares about is the names the modules are given when they’re
imported.

For example, if we changed the top of our root __init__.py to look like
this:

import db as database

Our task list would change thusly:

deploy
compress
lb.add_backend
database.migrations.list
database.migrations.run

This applies to any other import – you could import third party modules into
your own task hierarchy, or grab a deeply nested module and make it appear near
the top level.

Nested list output

As a final note, we’ve been using the default Fabric --list
output during this section – it makes it more obvious what the actual task
names are. However, you can get a more nested or tree-like view by passing
nested to the --list-format option:

$ fab --list-format=nested --list
Available commands (remember to call as module.[...].task):

 deploy
 compress
 lb:
 add_backend
 database:
 migrations:
 list
 run

While it slightly obfuscates the “real” task names, this view provides a handy
way of noting the organization of tasks in large namespaces.

Classic tasks

When no new-style Task-based tasks are found, Fabric will
consider any callable object found in your fabfile, except the following:

	Callables whose name starts with an underscore (_). In other words,
Python’s usual “private” convention holds true here.

	Callables defined within Fabric itself. Fabric’s own functions such as
run and sudo will not show up in
your task list.

Imports

Python’s import statement effectively includes the imported objects in your
module’s namespace. Since Fabric’s fabfiles are just Python modules, this means
that imports are also considered as possible classic-style tasks, alongside
anything defined in the fabfile itself.

Note

This only applies to imported callable objects – not modules.
Imported modules only come into play if they contain new-style
tasks, at which point this section no longer
applies.

Because of this, we strongly recommend that you use the import module form
of importing, followed by module.callable(), which will result in a cleaner
fabfile API than doing from module import callable.

For example, here’s a sample fabfile which uses urllib.urlopen to get some
data out of a webservice:

from urllib import urlopen

from fabric.api import run

def webservice_read():
 objects = urlopen('http://my/web/service/?foo=bar').read().split()
 print(objects)

This looks simple enough, and will run without error. However, look what
happens if we run fab --list on this fabfile:

$ fab --list
Available commands:

 webservice_read List some directories.
 urlopen urlopen(url [, data]) -> open file-like object

Our fabfile of only one task is showing two “tasks”, which is bad enough, and
an unsuspecting user might accidentally try to call fab urlopen, which
probably won’t work very well. Imagine any real-world fabfile, which is likely
to be much more complex, and hopefully you can see how this could get messy
fast.

For reference, here’s the recommended way to do it:

import urllib

from fabric.api import run

def webservice_read():
 objects = urllib.urlopen('http://my/web/service/?foo=bar').read().split()
 print(objects)

It’s a simple change, but it’ll make anyone using your fabfile a bit happier.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Color output functions

New in version 0.9.2.

Functions for wrapping strings in ANSI color codes.

Each function within this module returns the input string text, wrapped
with ANSI color codes for the appropriate color.

For example, to print some text as green on supporting terminals:

from fabric.colors import green

print(green("This text is green!"))

Because these functions simply return modified strings, you can nest them:

from fabric.colors import red, green

print(red("This sentence is red, except for " + green("these words, which are green") + "."))

If bold is set to True, the ANSI flag for bolding will be flipped on
for that particular invocation, which usually shows up as a bold or brighter
version of the original color on most terminals.

	
fabric.colors.blue(text, bold=False)

	

	
fabric.colors.cyan(text, bold=False)

	

	
fabric.colors.green(text, bold=False)

	

	
fabric.colors.magenta(text, bold=False)

	

	
fabric.colors.red(text, bold=False)

	

	
fabric.colors.white(text, bold=False)

	

	
fabric.colors.yellow(text, bold=False)

	

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Context Managers

Context managers for use with the with statement.

Note

When using Python 2.5, you will need to start your fabfile
with from __future__ import with_statement in order to make use of
the with statement (which is a regular, non __future__ feature of
Python 2.6+.)

Note

If you are using multiple directly nested with statements, it can
be convenient to use multiple context expressions in one single with
statement. Instead of writing:

with cd('/path/to/app'):
 with prefix('workon myvenv'):
 run('./manage.py syncdb')
 run('./manage.py loaddata myfixture')

you can write:

with cd('/path/to/app'), prefix('workon myvenv'):
 run('./manage.py syncdb')
 run('./manage.py loaddata myfixture')

Note that you need Python 2.7+ for this to work. On Python 2.5 or 2.6, you
can do the following:

from contextlib import nested

with nested(cd('/path/to/app'), prefix('workon myvenv')):
 ...

Finally, note that settings implements
nested itself – see its API doc for details.

	
fabric.context_managers.cd(path)

	Context manager that keeps directory state when calling remote operations.

Any calls to run, sudo, get, or put within the wrapped block will
implicitly have a string similar to "cd <path> && " prefixed in order
to give the sense that there is actually statefulness involved.

Note

cd only affects remote paths – to modify local paths, use
lcd.

Because use of cd affects all such invocations, any code making use of
those operations, such as much of the contrib section, will also be
affected by use of cd.

Like the actual ‘cd’ shell builtin, cd may be called with relative paths
(keep in mind that your default starting directory is your remote user’s
$HOME) and may be nested as well.

Below is a “normal” attempt at using the shell ‘cd’, which doesn’t work due
to how shell-less SSH connections are implemented – state is not kept
between invocations of run or sudo:

run('cd /var/www')
run('ls')

The above snippet will list the contents of the remote user’s $HOME
instead of /var/www. With cd, however, it will work as expected:

with cd('/var/www'):
 run('ls') # Turns into "cd /var/www && ls"

Finally, a demonstration (see inline comments) of nesting:

with cd('/var/www'):
 run('ls') # cd /var/www && ls
 with cd('website1'):
 run('ls') # cd /var/www/website1 && ls

Note

This context manager is currently implemented by appending to (and, as
always, restoring afterwards) the current value of an environment
variable, env.cwd. However, this implementation may change in the
future, so we do not recommend manually altering env.cwd – only
the behavior of cd will have any guarantee of backwards
compatibility.

Note

Space characters will be escaped automatically to make dealing with
such directory names easier.

Changed in version 1.0: Applies to get and put in addition to the command-running
operations.

See also

lcd

	
fabric.context_managers.hide(*groups)

	Context manager for setting the given output groups to False.

groups must be one or more strings naming the output groups defined in
output. The given groups will be set to False for the
duration of the enclosed block, and restored to their previous value
afterwards.

For example, to hide the “[hostname] run:” status lines, as well as
preventing printout of stdout and stderr, one might use hide as follows:

def my_task():
 with hide('running', 'stdout', 'stderr'):
 run('ls /var/www')

	
fabric.context_managers.lcd(path)

	Context manager for updating local current working directory.

This context manager is identical to cd, except
that it changes a different env var (lcwd, instead of cwd) and thus
only affects the invocation of local and the local
arguments to get/put.

Relative path arguments are relative to the local user’s current working
directory, which will vary depending on where Fabric (or Fabric-using code)
was invoked. You can check what this is with os.getcwd [http://docs.python.org/release/2.6/library/os.html#os.getcwd]. It may be
useful to pin things relative to the location of the fabfile in use, which
may be found in env.real_fabfile

New in version 1.0.

	
fabric.context_managers.path(path, behavior='append')

	Append the given path to the PATH used to execute any wrapped commands.

Any calls to run or sudo within the wrapped block will implicitly have
a string similar to "PATH=$PATH:<path> " prepended before the given
command.

You may customize the behavior of path by specifying the optional
behavior keyword argument, as follows:

	'append': append given path to the current $PATH, e.g.
PATH=$PATH:<path>. This is the default behavior.

	'prepend': prepend given path to the current $PATH, e.g.
PATH=<path>:$PATH.

	'replace': ignore previous value of $PATH altogether, e.g.
PATH=<path>.

Note

This context manager is currently implemented by modifying (and, as
always, restoring afterwards) the current value of environment
variables, env.path and env.path_behavior. However, this
implementation may change in the future, so we do not recommend
manually altering them directly.

New in version 1.0.

	
fabric.context_managers.prefix(command)

	Prefix all wrapped run/sudo commands with given command plus &&.

This is nearly identical to cd, except that nested
invocations append to a list of command strings instead of modifying a
single string.

Most of the time, you’ll want to be using this alongside a shell script
which alters shell state, such as ones which export or alter shell
environment variables.

For example, one of the most common uses of this tool is with the
workon command from virtualenvwrapper [http://www.doughellmann.com/projects/virtualenvwrapper/]:

with prefix('workon myvenv'):
 run('./manage.py syncdb')

In the above snippet, the actual shell command run would be this:

$ workon myvenv && ./manage.py syncdb

This context manager is compatible with cd, so
if your virtualenv doesn’t cd in its postactivate script, you could
do the following:

with cd('/path/to/app'):
 with prefix('workon myvenv'):
 run('./manage.py syncdb')
 run('./manage.py loaddata myfixture')

Which would result in executions like so:

$ cd /path/to/app && workon myvenv && ./manage.py syncdb
$ cd /path/to/app && workon myvenv && ./manage.py loaddata myfixture

Finally, as alluded to near the beginning,
prefix may be nested if desired, e.g.:

with prefix('workon myenv'):
 run('ls')
 with prefix('source /some/script'):
 run('touch a_file')

The result:

$ workon myenv && ls
$ workon myenv && source /some/script && touch a_file

Contrived, but hopefully illustrative.

	
fabric.context_managers.settings(*args, **kwargs)

	Nest context managers and/or override env variables.

settings serves two purposes:

	Most usefully, it allows temporary overriding/updating of env with
any provided keyword arguments, e.g. with settings(user='foo'):.
Original values, if any, will be restored once the with block closes.

	The keyword argument clean_revert has special meaning for
settings itself (see below) and will be stripped out before
execution.

	In addition, it will use contextlib.nested [http://docs.python.org/library/contextlib.html#contextlib.nested] to nest any given
non-keyword arguments, which should be other context managers, e.g.
with settings(hide('stderr'), show('stdout')):.

These behaviors may be specified at the same time if desired. An example
will hopefully illustrate why this is considered useful:

def my_task():
 with settings(
 hide('warnings', 'running', 'stdout', 'stderr'),
 warn_only=True
):
 if run('ls /etc/lsb-release'):
 return 'Ubuntu'
 elif run('ls /etc/redhat-release'):
 return 'RedHat'

The above task executes a run statement, but will warn instead of
aborting if the ls fails, and all output – including the warning
itself – is prevented from printing to the user. The end result, in this
scenario, is a completely silent task that allows the caller to figure out
what type of system the remote host is, without incurring the handful of
output that would normally occur.

Thus, settings may be used to set any combination of environment
variables in tandem with hiding (or showing) specific levels of output, or
in tandem with any other piece of Fabric functionality implemented as a
context manager.

If clean_revert is set to True, settings will not revert
keys which are altered within the nested block, instead only reverting keys
whose values remain the same as those given. More examples will make this
clear; below is how settings operates normally:

Before the block, env.parallel defaults to False, host_string to None
with settings(parallel=True, host_string='myhost'):
 # env.parallel is True
 # env.host_string is 'myhost'
 env.host_string = 'otherhost'
 # env.host_string is now 'otherhost'
Outside the block:
* env.parallel is False again
* env.host_string is None again

The internal modification of env.host_string is nullified – not always
desirable. That’s where clean_revert comes in:

Before the block, env.parallel defaults to False, host_string to None
with settings(parallel=True, host_string='myhost', clean_revert=True):
 # env.parallel is True
 # env.host_string is 'myhost'
 env.host_string = 'otherhost'
 # env.host_string is now 'otherhost'
Outside the block:
* env.parallel is False again
* env.host_string remains 'otherhost'

Brand new keys which did not exist in env prior to using settings
are also preserved if clean_revert is active. When False, such keys
are removed when the block exits.

New in version 1.4.1: The clean_revert kwarg.

	
fabric.context_managers.show(*groups)

	Context manager for setting the given output groups to True.

groups must be one or more strings naming the output groups defined in
output. The given groups will be set to True for the
duration of the enclosed block, and restored to their previous value
afterwards.

For example, to turn on debug output (which is typically off by default):

def my_task():
 with show('debug'):
 run('ls /var/www')

As almost all output groups are displayed by default, show is most useful
for turning on the normally-hidden debug group, or when you know or
suspect that code calling your own code is trying to hide output with
hide.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Decorators

Convenience decorators for use in fabfiles.

	
fabric.decorators.hosts(*host_list)

	Decorator defining which host or hosts to execute the wrapped function on.

For example, the following will ensure that, barring an override on the
command line, my_func will be run on host1, host2 and
host3, and with specific users on host1 and host3:

@hosts('user1@host1', 'host2', 'user2@host3')
def my_func():
 pass

hosts may be invoked with either an argument list
(@hosts('host1'), @hosts('host1', 'host2')) or a single, iterable
argument (@hosts(['host1', 'host2'])).

Note that this decorator actually just sets the function’s .hosts
attribute, which is then read prior to executing the function.

Changed in version 0.9.2: Allow a single, iterable argument (@hosts(iterable)) to be used
instead of requiring @hosts(*iterable).

	
fabric.decorators.roles(*role_list)

	Decorator defining a list of role names, used to look up host lists.

A role is simply defined as a key in env whose value is a list of one or
more host connection strings. For example, the following will ensure that,
barring an override on the command line, my_func will be executed
against the hosts listed in the webserver and dbserver roles:

env.roledefs.update({
 'webserver': ['www1', 'www2'],
 'dbserver': ['db1']
})

@roles('webserver', 'dbserver')
def my_func():
 pass

As with hosts, roles may be
invoked with either an argument list or a single, iterable argument.
Similarly, this decorator uses the same mechanism as
hosts and simply sets <function>.roles.

Changed in version 0.9.2: Allow a single, iterable argument to be used (same as
hosts).

	
fabric.decorators.runs_once(func)

	Decorator preventing wrapped function from running more than once.

By keeping internal state, this decorator allows you to mark a function
such that it will only run once per Python interpreter session, which in
typical use means “once per invocation of the fab program”.

Any function wrapped with this decorator will silently fail to execute the
2nd, 3rd, ..., Nth time it is called, and will return the value of the
original run.

	
fabric.decorators.serial(func)

	Forces the wrapped function to always run sequentially, never in parallel.

This decorator takes precedence over the global value of env.parallel. However, if a task is decorated with both
serial and parallel,
parallel wins.

New in version 1.3.

	
fabric.decorators.parallel(pool_size=None)

	Forces the wrapped function to run in parallel, instead of sequentially.

This decorator takes precedence over the global value of env.parallel. It also takes precedence over serial
if a task is decorated with both.

New in version 1.3.

	
fabric.decorators.task(*args, **kwargs)

	Decorator declaring the wrapped function to be a new-style task.

May be invoked as a simple, argument-less decorator (i.e. @task) or
with arguments customizing its behavior (e.g. @task(alias='myalias')).

Please see the new-style task documentation for
details on how to use this decorator.

Changed in version 1.2: Added the alias, aliases, task_class and default
keyword arguments. See Arguments for details.

	
fabric.decorators.with_settings(*arg_settings, **kw_settings)

	Decorator equivalent of fabric.context_managers.settings.

Allows you to wrap an entire function as if it was called inside a block
with the settings context manager. This may be useful if you know you
want a given setting applied to an entire function body, or wish to
retrofit old code without indenting everything.

For example, to turn aborts into warnings for an entire task function:

@with_settings(warn_only=True)
def foo():
 ...

See also

settings

New in version 1.1.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Network

Classes and subroutines dealing with network connections and related topics.

	
fabric.network.disconnect_all()

	Disconnect from all currently connected servers.

Used at the end of fab‘s main loop, and also intended for use by
library users.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Operations

Functions to be used in fabfiles and other non-core code, such as run()/sudo().

	
fabric.operations.get(remote_path, local_path=None)

	Download one or more files from a remote host.

get returns an iterable containing the absolute paths
to all local files downloaded, which will be empty if local_path was a
StringIO object (see below for more on using StringIO). This object will
also exhibit a .failed attribute containing any remote file paths which
failed to download, and a .succeeded attribute equivalent to not
.failed.

remote_path is the remote file or directory path to download, which may
contain shell glob syntax, e.g. "/var/log/apache2/*.log", and will have
tildes replaced by the remote home directory. Relative paths will be
considered relative to the remote user’s home directory, or the current
remote working directory as manipulated by cd.
If the remote path points to a directory, that directory will be downloaded
recursively.

local_path is the local file path where the downloaded file or files
will be stored. If relative, it will honor the local current working
directory as manipulated by lcd. It may be
interpolated, using standard Python dict-based interpolation, with the
following variables:

	host: The value of env.host_string, eg myhostname or
user@myhostname-222 (the colon between hostname and port is turned
into a dash to maximize filesystem compatibility)

	dirname: The directory part of the remote file path, e.g. the
src/projectname in src/projectname/utils.py.

	basename: The filename part of the remote file path, e.g. the
utils.py in src/projectname/utils.py

	path: The full remote path, e.g. src/projectname/utils.py.

Note

When remote_path is an absolute directory path, only the inner
directories will be recreated locally and passed into the above
variables. So for example, get('/var/log', '%(path)s') would start
writing out files like apache2/access.log,
postgresql/8.4/postgresql.log, etc, in the local working directory.
It would not write out e.g. var/log/apache2/access.log.

Additionally, when downloading a single file, %(dirname)s and
%(path)s do not make as much sense and will be empty and equivalent
to %(basename)s, respectively. Thus a call like
get('/var/log/apache2/access.log', '%(path)s') will save a local
file named access.log, not var/log/apache2/access.log.

This behavior is intended to be consistent with the command-line
scp program.

If left blank, local_path defaults to "%(host)s/%(path)s" in order
to be safe for multi-host invocations.

Warning

If your local_path argument does not contain %(host)s and your
get call runs against multiple hosts, your local
files will be overwritten on each successive run!

If local_path does not make use of the above variables (i.e. if it is a
simple, explicit file path) it will act similar to scp or cp,
overwriting pre-existing files if necessary, downloading into a directory
if given (e.g. get('/path/to/remote_file.txt', 'local_directory') will
create local_directory/remote_file.txt) and so forth.

local_path may alternately be a file-like object, such as the result of
open('path', 'w') or a StringIO instance.

Note

Attempting to get a directory into a file-like object is not valid
and will result in an error.

Note

This function will use seek and tell to overwrite the entire
contents of the file-like object, in order to be consistent with the
behavior of put (which also considers the entire
file). However, unlike put, the file pointer will
not be restored to its previous location, as that doesn’t make as much
sense here and/or may not even be possible.

Note

Due to how our SSH layer works, a temporary file will still be written
to your hard disk even if you specify a file-like object such as a
StringIO for the local_path argument. Cleanup is performed,
however – we just note this for users expecting straight-to-memory
transfers. (We hope to patch our SSH layer in the future to enable true
straight-to-memory downloads.)

Changed in version 1.0: Now honors the remote working directory as manipulated by
cd, and the local working directory as
manipulated by lcd.

Changed in version 1.0: Now allows file-like objects in the local_path argument.

Changed in version 1.0: local_path may now contain interpolated path- and host-related
variables.

Changed in version 1.0: Directories may be specified in the remote_path argument and will
trigger recursive downloads.

Changed in version 1.0: Return value is now an iterable of downloaded local file paths, which
also exhibits the .failed and .succeeded attributes.

	
fabric.operations.open_shell(command=None)

	Invoke a fully interactive shell on the remote end.

If command is given, it will be sent down the pipe before handing
control over to the invoking user.

This function is most useful for when you need to interact with a heavily
shell-based command or series of commands, such as when debugging or when
fully interactive recovery is required upon remote program failure.

It should be considered an easy way to work an interactive shell session
into the middle of a Fabric script and is not a drop-in replacement for
run, which is also capable of interacting with the
remote end (albeit only while its given command is executing) and has much
stronger programmatic abilities such as error handling and stdout/stderr
capture.

Specifically, open_shell provides a better interactive
experience than run, but use of a full remote shell
prevents Fabric from determining whether programs run within the shell have
failed, and pollutes the stdout/stderr stream with shell output such as
login banners, prompts and echoed stdin.

Thus, this function does not have a return value and will not trigger
Fabric’s failure handling if any remote programs result in errors.

New in version 1.0.

	
fabric.operations.put(local_path, remote_path, use_sudo=False, mirror_local_mode=False, mode=None)

	Upload one or more files to a remote host.

put returns an iterable containing the absolute file
paths of all remote files uploaded. This iterable also exhibits a
.failed attribute containing any local file paths which failed to
upload (and may thus be used as a boolean test.) You may also check
.succeeded which is equivalent to not .failed.

local_path may be a relative or absolute local file or directory path,
and may contain shell-style wildcards, as understood by the Python glob
module. Tilde expansion (as implemented by os.path.expanduser) is also
performed.

local_path may alternately be a file-like object, such as the result of
open('path') or a StringIO instance.

Note

In this case, put will attempt to read the entire
contents of the file-like object by rewinding it using seek (and
will use tell afterwards to preserve the previous file position).

Note

Use of a file-like object in put‘s local_path
argument will cause a temporary file to be utilized due to limitations
in our SSH layer’s API.

remote_path may also be a relative or absolute location, but applied to
the remote host. Relative paths are relative to the remote user’s home
directory, but tilde expansion (e.g. ~/.ssh/) will also be performed if
necessary.

An empty string, in either path argument, will be replaced by the
appropriate end’s current working directory.

While the SFTP protocol (which put uses) has no direct ability to upload
files to locations not owned by the connecting user, you may specify
use_sudo=True to work around this. When set, this setting causes put
to upload the local files to a temporary location on the remote end, and
then use sudo to move them to remote_path.

In some use cases, it is desirable to force a newly uploaded file to match
the mode of its local counterpart (such as when uploading executable
scripts). To do this, specify mirror_local_mode=True.

Alternately, you may use the mode kwarg to specify an exact mode, in
the same vein as os.chmod or the Unix chmod command.

put will honor cd, so
relative values in remote_path will be prepended by the current remote
working directory, if applicable. Thus, for example, the below snippet
would attempt to upload to /tmp/files/test.txt instead of
~/files/test.txt:

with cd('/tmp'):
 put('/path/to/local/test.txt', 'files')

Use of lcd will affect local_path in the
same manner.

Examples:

put('bin/project.zip', '/tmp/project.zip')
put('*.py', 'cgi-bin/')
put('index.html', 'index.html', mode=0755)

Changed in version 1.0: Now honors the remote working directory as manipulated by
cd, and the local working directory as
manipulated by lcd.

Changed in version 1.0: Now allows file-like objects in the local_path argument.

Changed in version 1.0: Directories may be specified in the local_path argument and will
trigger recursive uploads.

Changed in version 1.0: Return value is now an iterable of uploaded remote file paths which
also exhibits the .failed and .succeeded attributes.

	
fabric.operations.reboot(wait=120)

	Reboot the remote system.

Will temporarily tweak Fabric’s reconnection settings (timeout and
connection_attempts) to ensure that reconnection does not give up
for at least wait seconds.

Note

As of Fabric 1.4, the ability to reconnect partway through a session no
longer requires use of internal APIs. While we are not officially
deprecating this function, adding more features to it will not be a
priority.

Users who want greater control
are encouraged to check out this function’s (6 lines long, well
commented) source code and write their own adaptation using different
timeout/attempt values or additional logic.

New in version 0.9.2.

Changed in version 1.4: Changed the wait kwarg to be optional, and refactored to leverage
the new reconnection functionality; it may not actually have to wait
for wait seconds before reconnecting.

	
fabric.operations.run(command, shell=True, pty=True, combine_stderr=True)

	Run a shell command on a remote host.

If shell is True (the default), run will execute the given command
string via a shell interpreter, the value of which may be controlled by
setting env.shell (defaulting to something similar to /bin/bash -l -c
"<command>".) Any double-quote (") or dollar-sign ($) characters
in command will be automatically escaped when shell is True.

run will return the result of the remote program’s stdout as a single
(likely multiline) string. This string will exhibit failed and
succeeded boolean attributes specifying whether the command failed or
succeeded, and will also include the return code as the return_code
attribute.

Any text entered in your local terminal will be forwarded to the remote
program as it runs, thus allowing you to interact with password or other
prompts naturally. For more on how this works, see
Interaction with remote programs.

You may pass pty=False to forego creation of a pseudo-terminal on the
remote end in case the presence of one causes problems for the command in
question. However, this will force Fabric itself to echo any and all input
you type while the command is running, including sensitive passwords. (With
pty=True, the remote pseudo-terminal will echo for you, and will
intelligently handle password-style prompts.) See Pseudo-terminals for
details.

Similarly, if you need to programmatically examine the stderr stream of the
remote program (exhibited as the stderr attribute on this function’s
return value), you may set combine_stderr=False. Doing so has a high
chance of causing garbled output to appear on your terminal (though the
resulting strings returned by run will be properly
separated). For more info, please read Combining stdout and stderr.

Examples:

run("ls /var/www/")
run("ls /home/myuser", shell=False)
output = run('ls /var/www/site1')

New in version 1.0: The succeeded and stderr return value attributes, the
combine_stderr kwarg, and interactive behavior.

Changed in version 1.0: The default value of pty is now True.

Changed in version 1.0.2: The default value of combine_stderr is now None instead of
True. However, the default behavior is unchanged, as the global
setting is still True.

	
fabric.operations.sudo(command, shell=True, pty=True, combine_stderr=True, user=None)

	Run a shell command on a remote host, with superuser privileges.

sudo is identical in every way to run, except that it will always wrap
the given command in a call to the sudo program to provide
superuser privileges.

sudo accepts an additional user argument, which is passed to sudo
and allows you to run as some user other than root. On most systems, the
sudo program can take a string username or an integer userid (uid);
user may likewise be a string or an int.

Examples:

sudo("~/install_script.py")
sudo("mkdir /var/www/new_docroot", user="www-data")
sudo("ls /home/jdoe", user=1001)
result = sudo("ls /tmp/")

Changed in version 1.0: See the changed and added notes for run.

	
fabric.operations.local(command, capture=False)

	Run a command on the local system.

local is simply a convenience wrapper around the use of the builtin
Python subprocess module with shell=True activated. If you need to
do anything special, consider using the subprocess module directly.

local is not currently capable of simultaneously printing and
capturing output, as run/sudo
do. The capture kwarg allows you to switch between printing and
capturing as necessary, and defaults to False.

When capture=False, the local subprocess’ stdout and stderr streams are
hooked up directly to your terminal, though you may use the global
output controls output.stdout and
output.stderr to hide one or both if desired. In this mode, the return
value’s stdout/stderr values are always empty.

When capture=True, you will not see any output from the subprocess in
your terminal, but the return value will contain the captured
stdout/stderr.

In either case, as with run and
sudo, this return value exhibits the return_code,
stderr, failed and succeeded attributes. See run for details.

local will honor the lcd
context manager, allowing you to control its current working directory
independently of the remote end (which honors
cd).

Changed in version 1.0: Added the succeeded and stderr attributes.

Changed in version 1.0: Now honors the lcd context manager.

Changed in version 1.0: Changed the default value of capture from True to False.

	
fabric.operations.prompt(text, key=None, default='', validate=None)

	Prompt user with text and return the input (like raw_input).

A single space character will be appended for convenience, but nothing
else. Thus, you may want to end your prompt text with a question mark or a
colon, e.g. prompt("What hostname?").

If key is given, the user’s input will be stored as env.<key> in
addition to being returned by prompt. If the key already existed in
env, its value will be overwritten and a warning printed to the user.

If default is given, it is displayed in square brackets and used if the
user enters nothing (i.e. presses Enter without entering any text).
default defaults to the empty string. If non-empty, a space will be
appended, so that a call such as prompt("What hostname?",
default="foo") would result in a prompt of What hostname? [foo] (with
a trailing space after the [foo].)

The optional keyword argument validate may be a callable or a string:

	If a callable, it is called with the user’s input, and should return the
value to be stored on success. On failure, it should raise an exception
with an exception message, which will be printed to the user.

	If a string, the value passed to validate is used as a regular
expression. It is thus recommended to use raw strings in this case. Note
that the regular expression, if it is not fully matching (bounded by
^ and $) it will be made so. In other words, the input must fully
match the regex.

Either way, prompt will re-prompt until validation passes (or the user
hits Ctrl-C).

Note

prompt honors env.abort_on_prompts and will call abort instead of
prompting if that flag is set to True. If you want to block on user
input regardless, try wrapping with
settings.

Examples:

Simplest form:
environment = prompt('Please specify target environment: ')

With default, and storing as env.dish:
prompt('Specify favorite dish: ', 'dish', default='spam & eggs')

With validation, i.e. requiring integer input:
prompt('Please specify process nice level: ', key='nice', validate=int)

With validation against a regular expression:
release = prompt('Please supply a release name',
 validate=r'^\w+-\d+(\.\d+)?$')

Prompt regardless of the global abort-on-prompts setting:
with settings(abort_on_prompts=False):
 prompt('I seriously need an answer on this! ')

	
fabric.operations.require(*keys, **kwargs)

	Check for given keys in the shared environment dict and abort if not found.

Positional arguments should be strings signifying what env vars should be
checked for. If any of the given arguments do not exist, Fabric will abort
execution and print the names of the missing keys.

The optional keyword argument used_for may be a string, which will be
printed in the error output to inform users why this requirement is in
place. used_for is printed as part of a string similar to:

"Th(is|ese) variable(s) (are|is) used for %s"

so format it appropriately.

The optional keyword argument provided_by may be a list of functions or
function names or a single function or function name which the user should
be able to execute in order to set the key or keys; it will be included in
the error output if requirements are not met.

Note: it is assumed that the keyword arguments apply to all given keys as a
group. If you feel the need to specify more than one used_for, for
example, you should break your logic into multiple calls to require().

Changed in version 1.1: Allow iterable provided_by values instead of just single values.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Tasks

	
class fabric.tasks.Task(alias=None, aliases=None, default=False, *args, **kwargs)

	Abstract base class for objects wishing to be picked up as Fabric tasks.

Instances of subclasses will be treated as valid tasks when present in
fabfiles loaded by the fab tool.

For details on how to implement and use Task subclasses,
please see the usage documentation on new-style tasks.

New in version 1.1.

	
get_hosts(arg_hosts, arg_roles, arg_exclude_hosts, env=None)

	Return the host list the given task should be using.

See How host lists are constructed for detailed documentation on how host lists are
set.

	
fabric.tasks.execute(task, *args, **kwargs)

	Execute task (callable or name), honoring host/role decorators, etc.

task may be an actual callable object, or it may be a registered task
name, which is used to look up a callable just as if the name had been
given on the command line (including namespaced tasks,
e.g. "deploy.migrate".

The task will then be executed once per host in its host list, which is
(again) assembled in the same manner as CLI-specified tasks: drawing from
-H, env.hosts, the hosts or
roles decorators, and so forth.

host, hosts, role, roles and exclude_hosts kwargs will
be stripped out of the final call, and used to set the task’s host list, as
if they had been specified on the command line like e.g. fab
taskname:host=hostname.

Any other arguments or keyword arguments will be passed verbatim into
task when it is called, so execute(mytask, 'arg1', kwarg1='value')
will (once per host) invoke mytask('arg1', kwarg1='value').

This function returns a dictionary mapping host strings to the given task’s
return value for that host’s execution run. For example, execute(foo,
hosts=['a', 'b']) might return {'a': None, 'b': 'bar'} if foo
returned nothing on host a but returned 'bar' on host b.

In situations where a task execution fails for a given host but overall
progress does not abort (such as when env.skip_bad_hosts is True) the return value for that host will be the error
object or message.

See also

The execute usage docs, for an expanded explanation
and some examples.

New in version 1.3.

Changed in version 1.4: Added the return value mapping; previously this function had no defined
return value.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Utils

Internal subroutines for e.g. aborting execution with an error message,
or performing indenting on multiline output.

	
fabric.utils.abort(msg)

	Abort execution, print msg to stderr and exit with error status (1.)

This function currently makes use of sys.exit [http://docs.python.org/library/sys.html#sys.exit], which raises
SystemExit [http://docs.python.org/library/exceptions.html#exceptions.SystemExit]. Therefore, it’s possible to detect and recover from inner
calls to abort by using except SystemExit or similar.

	
fabric.utils.error(message, func=None, exception=None, stdout=None, stderr=None)

	Call func with given error message.

If func is None (the default), the value of env.warn_only
determines whether to call abort or warn.

If exception is given, it is inspected to get a string message, which
is printed alongside the user-generated message.

If stdout and/or stderr are given, they are assumed to be strings
to be printed.

	
fabric.utils.fastprint(text, show_prefix=False, end='', flush=True)

	Print text immediately, without any prefix or line ending.

This function is simply an alias of puts with different
default argument values, such that the text is printed without any
embellishment and immediately flushed.

It is useful for any situation where you wish to print text which might
otherwise get buffered by Python’s output buffering (such as within a
processor intensive for loop). Since such use cases typically also
require a lack of line endings (such as printing a series of dots to
signify progress) it also omits the traditional newline by default.

Note

Since fastprint calls puts, it is
likewise subject to the user output level.

New in version 0.9.2.

See also

puts

	
fabric.utils.indent(text, spaces=4, strip=False)

	Return text indented by the given number of spaces.

If text is not a string, it is assumed to be a list of lines and will be
joined by \n prior to indenting.

When strip is True, a minimum amount of whitespace is removed from
the left-hand side of the given string (so that relative indents are
preserved, but otherwise things are left-stripped). This allows you to
effectively “normalize” any previous indentation for some inputs.

	
fabric.utils.puts(text, show_prefix=None, end='\n', flush=False)

	An alias for print whose output is managed by Fabric’s output controls.

In other words, this function simply prints to sys.stdout, but will
hide its output if the user output level is set to False.

If show_prefix=False, puts will omit the leading [hostname]
which it tacks on by default. (It will also omit this prefix if
env.host_string is empty.)

Newlines may be disabled by setting end to the empty string ('').
(This intentionally mirrors Python 3’s print syntax.)

You may force output flushing (e.g. to bypass output buffering) by setting
flush=True.

New in version 0.9.2.

See also

fastprint

	
fabric.utils.warn(msg)

	Print warning message, but do not abort execution.

This function honors Fabric’s output controls and will print the given msg to stderr,
provided that the warnings output level (which is active by default) is
turned on.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Console Output Utilities

Console/terminal user interface functionality.

	
fabric.contrib.console.confirm(question, default=True)

	Ask user a yes/no question and return their response as True or False.

question should be a simple, grammatically complete question such as
“Do you wish to continue?”, and will have a string similar to ” [Y/n] ”
appended automatically. This function will not append a question mark for
you.

By default, when the user presses Enter without typing anything, “yes” is
assumed. This can be changed by specifying default=False.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

Django Integration

New in version 0.9.2.

These functions streamline the process of initializing Django’s settings module
environment variable. Once this is done, your fabfile may import from your
Django project, or Django itself, without requiring the use of manage.py
plugins or having to set the environment variable yourself every time you use
your fabfile.

Currently, these functions only allow Fabric to interact with
local-to-your-fabfile Django installations. This is not as limiting as it
sounds; for example, you can use Fabric as a remote “build” tool as well as
using it locally. Imagine the following fabfile:

from fabric.api import run, local, hosts, cd
from fabric.contrib import django

django.project('myproject')
from myproject.myapp.models import MyModel

def print_instances():
 for instance in MyModel.objects.all():
 print(instance)

@hosts('production-server')
def print_production_instances():
 with cd('/path/to/myproject'):
 run('fab print_instances')

With Fabric installed on both ends, you could execute
print_production_instances locally, which would trigger print_instances
on the production server – which would then be interacting with your
production Django database.

As another example, if your local and remote settings are similar, you can use
it to obtain e.g. your database settings, and then use those when executing a
remote (non-Fabric) command. This would allow you some degree of freedom even
if Fabric is only installed locally:

from fabric.api import run
from fabric.contrib import django

django.settings_module('myproject.settings')
from django.conf import settings

def dump_production_database():
 run('mysqldump -u %s -p=%s %s > /tmp/prod-db.sql' % (
 settings.DATABASE_USER,
 settings.DATABASE_PASSWORD,
 settings.DATABASE_NAME
))

The above snippet will work if run from a local, development environment, again
provided your local settings.py mirrors your remote one in terms of
database connection info.

	
fabric.contrib.django.project(name)

	Sets DJANGO_SETTINGS_MODULE to '<name>.settings'.

This function provides a handy shortcut for the common case where one is
using the Django default naming convention for their settings file and
location.

Uses settings_module – see its documentation for details on why and how
to use this functionality.

	
fabric.contrib.django.settings_module(module)

	Set DJANGO_SETTINGS_MODULE shell environment variable to module.

Due to how Django works, imports from Django or a Django project will fail
unless the shell environment variable DJANGO_SETTINGS_MODULE is
correctly set (see the Django settings docs [http://docs.djangoproject.com/en/dev/topics/settings/].)

This function provides a shortcut for doing so; call it near the top of
your fabfile or Fabric-using code, after which point any Django imports
should work correctly.

Note

This function sets a shell environment variable (via
os.environ) and is unrelated to Fabric’s own internal “env”
variables.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fabric 1.4.4 documentation

File and Directory Management

Module providing easy API for working with remote files and folders.

	
fabric.contrib.files.append(filename, text, use_sudo=False, partial=False, escape=True)

	Append string (or list of strings) text to filename.

When a list is given, each string inside is handled independently (but in
the order given.)

If text is already found in filename, the append is not run, and
None is returned immediately. Otherwise, the given text is appended to the
end of the given filename via e.g. echo '$text' >> $filename.

The test for whether text already exists defaults to a full line match,
e.g. ^<text>$, as this seems to be the most sensible approach for the
“append lines to a file” use case. You may override this and force partial
searching (e.g. ^<text>) by specifying partial=True.

Because text is single-quoted, single quotes will be transparently
backslash-escaped. This can be disabled with escape=False.

If use_sudo is True, will use sudo instead of run.

Changed in version 0.9.1: Added the partial keyword argument.

Changed in version 1.0: Swapped the order of the filename and text arguments to be
consistent with other functions in this module.

Changed in version 1.0: Changed default value of partial kwarg to be False.

Changed in version 1.4: Updated the regular expression related escaping to try and solve
various corner cases.

	
fabric.contrib.files.comment(filename, regex, use_sudo=False, char='#', backup='.bak')

	Attempt to comment out all lines in filename matching regex.

The default commenting character is # and may be overridden by the
char argument.

This function uses the sed function, and will accept the same
use_sudo and backup keyword arguments that sed does.

comment will prepend the comment character to the beginning of the line,
so that lines end up looking like so:

this line is uncommented
#this line is commented
this line is indented and commented

In other words, comment characters will not “follow” indentation as they
sometimes do when inserted by hand. Neither will they have a trailing space
unless you specify e.g. char='# '.

Note

In order to preserve the line being commented out, this function will
wrap your regex argument in parentheses, so you don’t need to. It
will ensure that any preceding/trailing ^ or $ characters are
correctly moved outside the parentheses. For example, calling
comment(filename, r'^foo$') will result in a sed call with the
“before” regex of r'^(foo)$' (and the “after” regex, naturally, of
r'#\1'.)

	
fabric.contrib.files.contains(filename, text, exact=False, use_sudo=False, escape=True)

	Return True if filename contains text (which may be a regex.)

By default, this function will consider a partial line match (i.e. where
text only makes up part of the line it’s on). Specify exact=True to
change this behavior so that only a line containing exactly text
results in a True return value.

This function leverages egrep on the remote end (so it may not follow
Python regular expression syntax perfectly), and skips the usual outer
env.shell wrapper that most commands execute with.

If use_sudo is True, will use sudo instead of run.

If escape is False, no extra regular expression related escaping is
performed (this includes overriding exact so that no ^/$ is
added.)

Changed in version 1.0: Swapped the order of the filename and text arguments to be
consistent with other functions in this module.

Changed in version 1.4: Updated the regular expression related escaping to try and solve
various corner cases.

Changed in version 1.4: Added escape keyword argument.

	
fabric.contrib.files.exists(path, use_sudo=False, verbose=False)

	Return True if given path exists on the current remote host.

If use_sudo is True, will use sudo instead of run.

exists will, by default, hide all output (including the run line, stdout,
stderr and any warning resulting from the file not existing) in order to
avoid cluttering output. You may specify verbose=True to change this
behavior.

	
fabric.contrib.files.first(*args, **kwargs)

	Given one or more file paths, returns first one found, or None if none
exist. May specify use_sudo and verbose which are passed to exists.

	
fabric.contrib.files.sed(filename, before, after, limit='', use_sudo=False, backup='.bak', flags='')

	Run a search-and-replace on filename with given regex patterns.

Equivalent to sed -i<backup> -r -e "/<limit>/ s/<before>/<after>/<flags>g
<filename>".

For convenience, before and after will automatically escape forward
slashes, single quotes and parentheses for you, so you don’t need to
specify e.g. http:\/\/foo\.com, instead just using http://foo\.com
is fine.

If use_sudo is True, will use sudo instead of run.

sed will pass shell=False to run/sudo, in order to avoid problems
with many nested levels of quotes and backslashes.

Other options may be specified with sed-compatible regex flags – for
example, to make the search and replace case insensitive, specify
flags="i". The g flag is always specified regardless, so you do not
need to remember to include it when overriding this parameter.

New in version 1.1: The flags parameter.

	
fabric.contrib.files.uncomment(filename, regex, use_sudo=False, char='#', backup='.bak')

	Attempt to uncomment all lines in filename matching regex.

The default comment delimiter is # and may be overridden by the char
argument.

This function uses the sed function, and will accept the same
use_sudo and backup keyword arguments that sed does.

uncomment will remove a single whitespace character following the comment
character, if it exists, but will preserve all preceding whitespace. For
example, # foo would become foo (the single space is stripped) but
`` # foo`` would become `` foo`` (the single space is still stripped,
but the preceding 4 spaces are not.)

	
fabric.contrib.files.upload_template(filename, destination, context=None, use_jinja=False, template_dir=None, use_sudo=False, backup=True, mirror_local_mode=False, mode=None)

	Render and upload a template text file to a remote host.

filename should be the path to a text file, which may contain Python
string interpolation formatting [http://docs.python.org/release/2.5.4/lib/typesseq-strings.html] and will
be rendered with the given context dictionary context (if given.)

Alternately, if use_jinja is set to True and you have the Jinja2
templating library available, Jinja will be used to render the template
instead. Templates will be loaded from the invoking user’s current working
directory by default, or from template_dir if given.

The resulting rendered file will be uploaded to the remote file path
destination. If the destination file already exists, it will be
renamed with a .bak extension unless backup=False is specified.

By default, the file will be copied to destination as the logged-in
user; specify use_sudo=True to use sudo instead.

The mirror_local_mode and mode kwargs are passed directly to an
internal put call; please see its documentation for
details on these two options.

Changed in version 1.1: Added the backup, mirror_local_mode and mode kwargs.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Fabric 1.4.4 documentation

Project Tools

Useful non-core functionality, e.g. functions composing multiple operations.

	
fabric.contrib.project.rsync_project(*args, **kwargs)

	Synchronize a remote directory with the current project directory via rsync.

Where upload_project() makes use of scp to copy one’s entire
project every time it is invoked, rsync_project() uses the rsync
command-line utility, which only transfers files newer than those on the
remote end.

rsync_project() is thus a simple wrapper around rsync; for
details on how rsync works, please see its manpage. rsync must be
installed on both your local and remote systems in order for this operation
to work correctly.

This function makes use of Fabric’s local() operation, and returns the
output of that function call; thus it will return the stdout, if any, of
the resultant rsync call.

rsync_project() takes the following parameters:

	remote_dir: the only required parameter, this is the path to the
directory on the remote server. Due to how rsync is implemented, the
exact behavior depends on the value of local_dir:

	If local_dir ends with a trailing slash, the files will be
dropped inside of remote_dir. E.g.
rsync_project("/home/username/project", "foldername/") will drop
the contents of foldername inside of /home/username/project.

	If local_dir does not end with a trailing slash (and this
includes the default scenario, when local_dir is not specified),
remote_dir is effectively the “parent” directory, and a new
directory named after local_dir will be created inside of it. So
rsync_project("/home/username", "foldername") would create a new
directory /home/username/foldername (if needed) and place the
files there.

	local_dir: by default, rsync_project uses your current working
directory as the source directory. This may be overridden by specifying
local_dir, which is a string passed verbatim to rsync, and thus
may be a single directory ("my_directory") or multiple directories
("dir1 dir2"). See the rsync documentation for details.

	exclude: optional, may be a single string, or an iterable of strings,
and is used to pass one or more --exclude options to rsync.

	delete: a boolean controlling whether rsync‘s --delete option
is used. If True, instructs rsync to remove remote files that no
longer exist locally. Defaults to False.

	extra_opts: an optional, arbitrary string which you may use to pass
custom arguments or options to rsync.

	ssh_opts: Like extra_opts but specifically for the SSH options
string (rsync’s --rsh flag.)

	capture: Sent directly into an inner local call.

Furthermore, this function transparently honors Fabric’s port and SSH key
settings. Calling this function when the current host string contains a
nonstandard port, or when env.key_filename is non-empty, will use the
specified port and/or SSH key filename(s).

For reference, the approximate rsync command-line call that is
constructed by this function is the following:

rsync [--delete] [--exclude exclude[0][, --exclude[1][, ...]]] \
 -pthrvz [extra_opts] <local_dir> <host_string>:<remote_dir>

New in version 1.4.0: The ssh_opts keyword argument.

New in version 1.4.1: The capture keyword argument.

	
fabric.contrib.project.upload_project(local_dir=None, remote_dir='')

	Upload the current project to a remote system via tar/gzip.

local_dir specifies the local project directory to upload, and defaults
to the current working directory.

remote_dir specifies the target directory to upload into (meaning that
a copy of local_dir will appear as a subdirectory of remote_dir)
and defaults to the remote user’s home directory.

This function makes use of the tar and gzip programs/libraries,
thus it will not work too well on Win32 systems unless one is using Cygwin
or something similar. It will attempt to clean up the local and remote
tarfiles when it finishes executing, even in the event of a failure.

Changed in version 1.1: Added the local_dir and remote_dir kwargs.

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	Fabric 1.4.4 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 fabric	

 	
 	
 fabric.colors	

 	
 	
 fabric.context_managers	

 	
 	
 fabric.contrib.console	

 	
 	
 fabric.contrib.django	

 	
 	
 fabric.contrib.files	

 	
 	
 fabric.contrib.project	

 	
 	
 fabric.decorators	

 	
 	
 fabric.network	

 	
 	
 fabric.operations	

 	
 	
 fabric.tasks	

 	
 	
 fabric.utils	

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	Fabric 1.4.4 documentation

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | Y

Symbols

 	

 	
 --abort-on-prompts

 	

 	command line option

 	
 --connection-attempts=M, -n M

 	

 	command line option

 	
 --hide=LEVELS

 	

 	command line option

 	
 --keepalive=KEEPALIVE

 	

 	command line option

 	
 --linewise

 	

 	command line option

 	
 --no-pty

 	

 	command line option

 	
 --set KEY=VALUE,...

 	

 	command line option

 	
 --shortlist

 	

 	command line option

 	
 --show=LEVELS

 	

 	command line option

 	
 --skip-bad-hosts

 	

 	command line option

 	
 --ssh-config-path

 	

 	command line option

 	
 --timeout=N, -t N

 	

 	command line option

 	
 -A, --forward-agent

 	

 	command line option

 	
 -a, --no_agent

 	

 	command line option

 	
 -c RCFILE, --config=RCFILE

 	

 	command line option

 	
 -d COMMAND, --display=COMMAND

 	

 	command line option

 	
 -D, --disable-known-hosts

 	

 	command line option

 	

 	
 -f FABFILE, --fabfile=FABFILE

 	

 	command line option

 	
 -F LIST_FORMAT, --list-format=LIST_FORMAT

 	

 	command line option

 	
 -H HOSTS, --hosts=HOSTS

 	

 	command line option

 	
 -h, --help

 	

 	command line option

 	
 -i KEY_FILENAME

 	

 	command line option

 	
 -k

 	

 	command line option

 	
 -l, --list

 	

 	command line option

 	
 -p PASSWORD, --password=PASSWORD

 	

 	command line option

 	
 -P, --parallel

 	

 	command line option

 	
 -R ROLES, --roles=ROLES

 	

 	command line option

 	
 -r, --reject-unknown-hosts

 	

 	command line option

 	
 -s SHELL, --shell=SHELL

 	

 	command line option

 	
 -u USER, --user=USER

 	

 	command line option

 	
 -V, --version

 	

 	command line option

 	
 -w, --warn-only

 	

 	command line option

 	
 -x HOSTS, --exclude-hosts=HOSTS

 	

 	command line option

 	
 -z, --pool-size

 	

 	command line option

A

 	

 	abort() (in module fabric.utils)

 	

 	append() (in module fabric.contrib.files)

B

 	

 	blue() (in module fabric.colors)

C

 	

 	cd() (in module fabric.context_managers)

 	
 command line option

 	

 	--abort-on-prompts

 	--connection-attempts=M, -n M

 	--hide=LEVELS

 	--keepalive=KEEPALIVE

 	--linewise

 	--no-pty

 	--set KEY=VALUE,...

 	--shortlist

 	--show=LEVELS

 	--skip-bad-hosts

 	--ssh-config-path

 	--timeout=N, -t N

 	-A, --forward-agent

 	-D, --disable-known-hosts

 	-F LIST_FORMAT, --list-format=LIST_FORMAT

 	-H HOSTS, --hosts=HOSTS

 	-P, --parallel

 	-R ROLES, --roles=ROLES

 	-V, --version

 	-a, --no_agent

 	-c RCFILE, --config=RCFILE

 	-d COMMAND, --display=COMMAND

 	-f FABFILE, --fabfile=FABFILE

 	-h, --help

 	-i KEY_FILENAME

 	-k

 	-l, --list

 	-p PASSWORD, --password=PASSWORD

 	-r, --reject-unknown-hosts

 	-s SHELL, --shell=SHELL

 	-u USER, --user=USER

 	-w, --warn-only

 	-x HOSTS, --exclude-hosts=HOSTS

 	-z, --pool-size

 	comment() (in module fabric.contrib.files)

 	

 	confirm() (in module fabric.contrib.console)

 	contains() (in module fabric.contrib.files)

 	cyan() (in module fabric.colors)

D

 	

 	disconnect_all() (in module fabric.network)

E

 	

 	error() (in module fabric.utils)

 	execute() (in module fabric.tasks)

 	

 	exists() (in module fabric.contrib.files)

F

 	

 	fabric.colors (module)

 	fabric.context_managers (module)

 	fabric.contrib.console (module)

 	fabric.contrib.django (module)

 	fabric.contrib.files (module)

 	fabric.contrib.project (module)

 	fabric.decorators (module)

 	

 	fabric.network (module)

 	fabric.operations (module)

 	fabric.tasks (module)

 	fabric.utils (module)

 	fastprint() (in module fabric.utils)

 	first() (in module fabric.contrib.files)

G

 	

 	get() (in module fabric.operations)

 	get_hosts() (fabric.tasks.Task method)

 	

 	green() (in module fabric.colors)

H

 	

 	hide() (in module fabric.context_managers)

 	

 	hosts() (in module fabric.decorators)

I

 	

 	indent() (in module fabric.utils)

L

 	

 	lcd() (in module fabric.context_managers)

 	

 	local() (in module fabric.operations)

M

 	

 	magenta() (in module fabric.colors)

O

 	

 	open_shell() (in module fabric.operations)

P

 	

 	parallel() (in module fabric.decorators)

 	path() (in module fabric.context_managers)

 	prefix() (in module fabric.context_managers)

 	project() (in module fabric.contrib.django)

 	

 	prompt() (in module fabric.operations)

 	put() (in module fabric.operations)

 	puts() (in module fabric.utils)

R

 	

 	reboot() (in module fabric.operations)

 	red() (in module fabric.colors)

 	require() (in module fabric.operations)

 	roles() (in module fabric.decorators)

 	

 	rsync_project() (in module fabric.contrib.project)

 	run() (in module fabric.operations)

 	runs_once() (in module fabric.decorators)

S

 	

 	sed() (in module fabric.contrib.files)

 	serial() (in module fabric.decorators)

 	settings() (in module fabric.context_managers)

 	

 	settings_module() (in module fabric.contrib.django)

 	show() (in module fabric.context_managers)

 	sudo() (in module fabric.operations)

T

 	

 	Task (class in fabric.tasks)

 	

 	task() (in module fabric.decorators)

U

 	

 	uncomment() (in module fabric.contrib.files)

 	upload_project() (in module fabric.contrib.project)

 	

 	upload_template() (in module fabric.contrib.files)

W

 	

 	warn() (in module fabric.utils)

 	white() (in module fabric.colors)

 	

 	with_settings() (in module fabric.decorators)

Y

 	

 	yellow() (in module fabric.colors)

 Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

 _static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/file.png

_static/up-pressed.png

_static/comment.png

_static/down.png

changelog.html

 Navigation

 		
 index

 		
 modules |

 		Fabric 1.4.4 documentation »

Changelog

How to read

This changelog lists each bugfix, feature addition, etc in the order they were
checked into Fabric’s source code repository. Published releases are bolded,
dated and inserted at the appropriate points in the timeline.

To find out the changes included in a given release, simply look at the entries
between that release and the previous one from the same release line (e.g.
1.1.4 down through 1.1.3 would be the effective changelog for the 1.1.4
release.)

Bugfixes to older release lines are always forward-ported to newer releases,
and this is reflected in the changelog. Thus, the changelog for e.g. 1.2.2
might contain entries for the 1.1 and 1.0 lines as well, because those changes
would have also been included in the 1.2 line.

Changelog

		2012-11-06: released Fabric 1.4.4 [https://github.com/fabric/fabric/tree/1.4.4]

		[Feature] #684 [https://github.com/fabric/fabric/issues/684]: Update how task wraps task functions to
preserve additional metadata; this allows decorated functions to play nice
with Sphinx autodoc. Thanks to Jaka Hudoklin for catch & patch.

		[Bug] #749 [https://github.com/fabric/fabric/issues/749]: Gracefully work around calls to fabric.version on systems
lacking /bin/sh (which causes an OSError in subprocess.Popen
calls.)

		[Bug] #718 [https://github.com/fabric/fabric/issues/718]: isinstance(foo, Bar) is used in main instead
of type(foo) == Bar in order to fix some edge cases.
Thanks to Mikhail Korobov.

		[Bug] #693 [https://github.com/fabric/fabric/issues/693]: Fixed edge case where abort driven failures within parallel
tasks could result in a top level exception (a KeyError) regarding error
handling. Thanks to Marcin Kuźmiński for the report.

		[Support] #681 [https://github.com/fabric/fabric/issues/681]: Fixed outdated docstring for runs_once
which claimed it would get run multiple times in parallel mode. That behavior
was fixed in an earlier release but the docs were not updated. Thanks to
Jan Brauer for the catch.

		2012-07-06: released Fabric 1.4.3 [https://github.com/fabric/fabric/tree/1.4.3]

		2012-07-06: released Fabric 1.3.8 [https://github.com/fabric/fabric/tree/1.3.8]

		[Bug] #671 [https://github.com/fabric/fabric/issues/671]: reject_unknown_hosts sometimes resulted in a password
prompt instead of an abort. This has been fixed. Thanks to Roy Smith for the
report.

		[Bug] #659 [https://github.com/fabric/fabric/issues/659]: Update docs to reflect that local currently
honors env.path. Thanks to @floledermann [https://github.com/floledermann] for the catch.

		[Bug] #652 [https://github.com/fabric/fabric/issues/652]: Show available commands when aborting on invalid command names.

		[Support] #651 [https://github.com/fabric/fabric/issues/651]: Added note about nesting with statements on Python 2.6+.
Thanks to Jens Rantil for the patch.

		[Bug] #649 [https://github.com/fabric/fabric/issues/649]: Don’t swallow non-abort-driven exceptions in parallel mode.
Fabric correctly printed such exceptions, and returned them from
execute, but did not actually cause the child or parent
processes to halt with a nonzero status. This has been fixed.
execute now also honors env.warn_only so
users may still opt to call it by hand and inspect the returned exceptions,
instead of encountering a hard stop. Thanks to Matt Robenolt for the catch.

		[Support] #645 [https://github.com/fabric/fabric/issues/645]: Update Sphinx docs to work well when run out of a source
tarball as opposed to a Git checkout. Thanks again to @Arfrever for the
catch.

		[Support] #640 [https://github.com/fabric/fabric/issues/640]: (also #644 [https://github.com/fabric/fabric/issues/644]) Update packaging manifest so sdist
tarballs include all necessary test & doc files. Thanks to Mike Gilbert and
@Arfrever for catch & patch.

		[Support] #634 [https://github.com/fabric/fabric/issues/634]: Clarified that lcd does no special
handling re: the user’s current working directory, and thus relative paths
given to it will be relative to os.getcwd(). Thanks to @techtonik [https://github.com/techtonik] for the catch.

		2012-05-07: released Fabric 1.4.2 [https://github.com/fabric/fabric/tree/1.4.2]

		2012-05-07: released Fabric 1.3.7 [https://github.com/fabric/fabric/tree/1.3.7]

		[Bug] #562 [https://github.com/fabric/fabric/issues/562]: Agent forwarding would error out or freeze when multiple uses of
the forwarded agent were used per remote invocation (e.g. a single
run command resulting in multiple Git or SVN checkouts.)
This has been fixed thanks to Steven McDonald and GitHub user @lynxis.

		[Support] #626 [https://github.com/fabric/fabric/issues/626]: Clarity updates to the tutorial. Thanks to GitHub user m4z
for the patches.

		[Bug] #625 [https://github.com/fabric/fabric/issues/625]: hide/show
did not correctly restore prior display settings if an exception was raised
inside the block. This has been fixed.

		[Bug] #624 [https://github.com/fabric/fabric/issues/624]: Login password prompts did not always display the username being
authenticated for. This has been fixed. Thanks to Nick Zalutskiy for catch &
patch.

		[Bug] #617 [https://github.com/fabric/fabric/issues/617]: Fix the clean_revert behavior of
settings so it doesn’t KeyError for newly
created settings keys. Thanks to Chris Streeter for the catch.

		[Bug] #616 [https://github.com/fabric/fabric/issues/616]: Add port number to the error message displayed upon connection
failures.

		[Bug] #609 [https://github.com/fabric/fabric/issues/609]: (and #564 [https://github.com/fabric/fabric/issues/564]) Document and clean up env.sudo_prefix so it can be more easily modified by users facing uncommon
use cases. Thanks to GitHub users 3point2 for the cleanup and SirScott
for the documentation catch.

		[Bug] #610 [https://github.com/fabric/fabric/issues/610]: Change detection of env.key_filename‘s type (added as part of
SSH config support in 1.4) so it supports arbitrary iterables. Thanks to
Brandon Rhodes for the catch.

		2012-04-04: released Fabric 1.4.1 [https://github.com/fabric/fabric/tree/1.4.1]

		2012-04-04: released Fabric 1.3.6 [https://github.com/fabric/fabric/tree/1.3.6]

		[Bug] #608 [https://github.com/fabric/fabric/issues/608]: Add capture kwarg to rsync_project
to aid in debugging rsync problems.

		[Bug] #607 [https://github.com/fabric/fabric/issues/607]: Allow local to display stdout/stderr when it
warns/aborts, if it was capturing them.

		[Bug] #395 [https://github.com/fabric/fabric/issues/395]: Added an FAQ entry detailing how to
handle init scripts which misbehave when a pseudo-tty is allocated.

		[Bug] #568 [https://github.com/fabric/fabric/issues/568]: execute allowed too much of its internal state
changes (to variables such as env.host_string and env.parallel) to
persist after execution completed; this caused a number of different
incorrect behaviors. execute has been overhauled to clean up
its own state changes – while preserving any state changes made by the task
being executed.

		[Bug] #584 [https://github.com/fabric/fabric/issues/584]: upload_project did not take explicit
remote directory location into account when untarring, and now uses
cd to address this. Thanks to Ben Burry for the
patch.

		[Bug] #458 [https://github.com/fabric/fabric/issues/458]: with_settings did not perfectly match
settings, re: ability to inline additional context
managers. This has been corrected. Thanks to Rory Geoghegan for the patch.

		[Bug] #499 [https://github.com/fabric/fabric/issues/499]: contrib.files.first used an
outdated function signature in its wrapped exists
call. This has been fixed. Thanks to Massimiliano Torromeo for catch & patch.

		[Bug] #551 [https://github.com/fabric/fabric/issues/551]: --list output now detects terminal window size
and truncates (or doesn’t truncate) accordingly. Thanks to Horacio G. de Oro
for the initial pull request.

		[Bug] #572 [https://github.com/fabric/fabric/issues/572]: Parallel task aborts (as oppposed to unhandled exceptions) now
correctly print their abort messages instead of tracebacks, and cause the
parent process to exit with the correct (nonzero) return code. Thanks to Ian
Langworth for the catch.

		[Bug] #306 [https://github.com/fabric/fabric/issues/306]: Remote paths now use posixpath for a separator. Thanks to Jason
Coombs for the patch.

		2012-02-13: released Fabric 1.4.0 [https://github.com/fabric/fabric/tree/1.4.0]

		2012-02-13: released Fabric 1.3.5 [https://github.com/fabric/fabric/tree/1.3.5]

		2012-02-13: released Fabric 1.2.6 [https://github.com/fabric/fabric/tree/1.2.6]

		2012-02-13: released Fabric 1.1.8 [https://github.com/fabric/fabric/tree/1.1.8]

		[Bug] #495 [https://github.com/fabric/fabric/issues/495]: Fixed documentation example showing how to subclass
Task. Thanks to Brett Haydon for the catch and Mark Merritt
for the patch.

		[Bug] #410 [https://github.com/fabric/fabric/issues/410]: Fixed a bug where using the task decorator
inside/under another decorator such as hosts could cause
that task to become invalid when invoked by name (due to how old-style vs
new-style tasks are detected.) Thanks to Dan Colish for the initial patch.

		[Feature] #559 [https://github.com/fabric/fabric/issues/559]: rsync_project now allows users to
append extra SSH-specific arguments to rsync‘s --rsh flag.

		[Feature] #138 [https://github.com/fabric/fabric/issues/138]: env.port may now be written to at fabfile module
level to set a default nonstandard port number. Previously this value was
read-only.

		[Feature] #3 [https://github.com/fabric/fabric/issues/3]: Fabric can now load a subset of SSH config functionality
directly from your local ~/.ssh/config if env.use_ssh_config is set to True. See Leveraging native SSH config files for details.
Thanks to Kirill Pinchuk for the initial patch.

		[Feature] #12 [https://github.com/fabric/fabric/issues/12]: Added the ability to try connecting multiple times to
temporarily-down remote systems, instead of immediately failing. (Default
behavior is still to only try once.) See env.timeout and
env.connection_attempts for controlling both
connection timeouts and total number of attempts. reboot
has also been overhauled (but practically deprecated – see its updated
docs.)

		[Feature] #474 [https://github.com/fabric/fabric/issues/474]: execute now allows you to access the executed
task’s return values, by itself returning a dictionary whose keys are the
host strings executed against.

		[Bug] #487 [https://github.com/fabric/fabric/issues/487]: Overhauled the regular expression escaping performed in
append and contains to try
and handle more corner cases. Thanks to Neilen Marais for the patch.

		[Support] #532 [https://github.com/fabric/fabric/issues/532]: Reorganized and cleaned up the output of fab --help.

		[Feature] #8 [https://github.com/fabric/fabric/issues/8]: Added --skip-bad-hosts/env.skip_bad_hosts option to allow skipping past temporarily down/unreachable
hosts.

		[Feature] #13 [https://github.com/fabric/fabric/issues/13]: Env vars may now be set at runtime via the new --set
command-line flag.

		[Feature] #506 [https://github.com/fabric/fabric/issues/506]: A new output alias, commands, has
been added, which allows hiding remote stdout and local “running command X”
output lines.

		[Feature] #72 [https://github.com/fabric/fabric/issues/72]: SSH agent forwarding support has made it into Fabric’s SSH
library, and hooks for using it have been added (disabled by default; use
-A or env.forward_agent to enable.) Thanks
to Ben Davis for porting an existing Paramiko patch to ssh and providing
the necessary tweak to Fabric.

		2012-01-12: released Fabric 1.3.4 [https://github.com/fabric/fabric/tree/1.3.4]

		[Bug] #492 [https://github.com/fabric/fabric/issues/492]: @parallel did not automatically
trigger linewise output, as was intended. This has
been fixed. Thanks to Brandon Huey for the catch.

		[Bug] #510 [https://github.com/fabric/fabric/issues/510]: Parallel mode is incompatible with user input, such as
password/hostname prompts, and was causing cryptic Operation not supported
by device errors when such prompts needed to be displayed. This behavior has
been updated to cleanly and obviously abort instead.

		[Bug] #494 [https://github.com/fabric/fabric/issues/494]: Fixed regression bug affecting some env values such as
env.port under parallel mode. Symptoms included
rsync_project bailing out due to a None port value
when run under @parallel. Thanks to Rob
Terhaar for the report.

		[Bug] #339 [https://github.com/fabric/fabric/issues/339]: Don’t show imported colors members in --list output. Thanks to Nick Trew for the report.

		2011-11-23: released Fabric 1.3.3 [https://github.com/fabric/fabric/tree/1.3.3]

		2011-11-23: released Fabric 1.2.5 [https://github.com/fabric/fabric/tree/1.2.5]

		2011-11-23: released Fabric 1.1.7 [https://github.com/fabric/fabric/tree/1.1.7]

		[Bug] #441 [https://github.com/fabric/fabric/issues/441]: Specifying a task module as a task on the command line no longer
blows up but presents the usual “no task by that name” error message instead.
Thanks to Mitchell Hashimoto for the catch.

		[Bug] #475 [https://github.com/fabric/fabric/issues/475]: Allow escaping of equals signs in per-task args/kwargs.

		[Bug] #450 [https://github.com/fabric/fabric/issues/450]: Improve traceback display when handling ImportError for
dependencies. Thanks to David Wolever for the patches.

		[Bug] #446 [https://github.com/fabric/fabric/issues/446]: Add QNX to list of secondary-case sed
targets. Thanks to Rodrigo Madruga for the tip.

		[Bug] #443 [https://github.com/fabric/fabric/issues/443]: exists didn’t expand tildes; now it does.
Thanks to Riccardo Magliocchetti for the patch.

		[Bug] #437 [https://github.com/fabric/fabric/issues/437]: with_settings now correctly preserves the
wrapped function’s docstring and other attributes. Thanks to Eric Buckley for
the catch and Luke Plant for the patch.

		[Bug] #400 [https://github.com/fabric/fabric/issues/400]: Handle corner case of systems where pwd.getpwuid raises
KeyError for the user’s UID instead of returning a valid string. Thanks
to Dougal Matthews for the catch.

		[Bug] #397 [https://github.com/fabric/fabric/issues/397]: Some poorly behaved objects in third party modules triggered
exceptions during Fabric’s “classic or new-style task?” test. A fix has been
added which tries to work around these.

		[Bug] #341 [https://github.com/fabric/fabric/issues/341]: append incorrectly failed to detect that
the line(s) given already existed in files hidden to the remote user, and
continued appending every time it ran. This has been fixed. Thanks to
Dominique Peretti for the catch and Martin Vilcans for the patch.

		[Bug] #342 [https://github.com/fabric/fabric/issues/342]: Combining cd with
put and its use_sudo keyword caused an unrecoverable
error. This has been fixed. Thanks to Egor M for the report.

		[Bug] #482 [https://github.com/fabric/fabric/issues/482]: Parallel mode should imply linewise output; omission of this
behavior was an oversight.

		[Bug] #230 [https://github.com/fabric/fabric/issues/230]: Fix regression re: combo of no fabfile & arbitrary command use.
Thanks to Ali Saifee for the catch.

		2011-11-07: released Fabric 1.3.2 [https://github.com/fabric/fabric/tree/1.3.2]

		2011-11-07: released Fabric 1.2.4 [https://github.com/fabric/fabric/tree/1.2.4]

		2011-11-07: released Fabric 1.1.6 [https://github.com/fabric/fabric/tree/1.1.6]

		[Support] #459 [https://github.com/fabric/fabric/issues/459]: Update our setup.py files to note that PyCrypto released
2.4.1, which fixes the setuptools problems.

		[Support] #467 [https://github.com/fabric/fabric/issues/467]: (also #468 [https://github.com/fabric/fabric/issues/468], #469 [https://github.com/fabric/fabric/issues/469]) Handful of documentation
clarification tweaks. Thanks to Paul Hoffman for the patches.

		2011-10-24: released Fabric 1.3.1 [https://github.com/fabric/fabric/tree/1.3.1]

		[Bug] #457 [https://github.com/fabric/fabric/issues/457]: Ensured that Fabric fast-fails parallel tasks if any child
processes encountered errors. Previously, multi-task invocations would
continue to the 2nd, etc task when failures occurred, which does not fit with
how Fabric usually behaves. Thanks to Github user sdcooke for the report
and Morgan Goose for the fix.

		2011-10-23: released Fabric 1.3.0 [https://github.com/fabric/fabric/tree/1.3.0]

		2011-10-23: released Fabric 1.2.3 [https://github.com/fabric/fabric/tree/1.2.3]

		2011-10-23: released Fabric 1.1.5 [https://github.com/fabric/fabric/tree/1.1.5]

		2011-10-23: released Fabric 1.0.5 [https://github.com/fabric/fabric/tree/1.0.5]

		[Support] #275 [https://github.com/fabric/fabric/issues/275]: To support an edge use case of the features released in
#19 [https://github.com/fabric/fabric/issues/19], and to lay the foundation for #275 [https://github.com/fabric/fabric/issues/275], we have forked
Paramiko into the Python ‘ssh’ library [http://pypi.python.org/pypi/ssh/]
and changed our dependency to it for Fabric 1.3 and higher. This may have
implications for the more uncommon install use cases, and package
maintainers, but we hope to iron out any issues as they come up.

		[Bug] #323 [https://github.com/fabric/fabric/issues/323]: put forgot how to expand leading tildes in
the remote file path. This has been corrected. Thanks to Piet Delport for the
catch.

		[Feature] #21 [https://github.com/fabric/fabric/issues/21]: It is now possible, using the new execute API
call, to execute task objects (by reference or by name) from within other
tasks or in library mode. execute honors the other tasks’
hosts/roles decorators, and also
supports passing in explicit host and/or role arguments.

		[Feature] #19 [https://github.com/fabric/fabric/issues/19]: Tasks may now be optionally executed in parallel. Please see
the parallel execution docs for details. Major
thanks to Morgan Goose for the initial implementation.

		[Bug] #182 [https://github.com/fabric/fabric/issues/182]: During display of remote stdout/stderr, Fabric occasionally
printed extraneous line prefixes (which in turn sometimes overwrote wrapped
text.) This has been fixed.

		[Bug] #430 [https://github.com/fabric/fabric/issues/430]: Tasks decorated with runs_once printed
extraneous ‘Executing...’ status lines on subsequent invocations. This is
noisy at best and misleading at worst, and has been corrected. Thanks to
Jacob Kaplan-Moss for the report.

		2011-09-01: released Fabric 1.2.2 [https://github.com/fabric/fabric/tree/1.2.2]

		2011-09-01: released Fabric 1.1.4 [https://github.com/fabric/fabric/tree/1.1.4]

		2011-09-01: released Fabric 1.0.4 [https://github.com/fabric/fabric/tree/1.0.4]

		[Bug] #252 [https://github.com/fabric/fabric/issues/252]: settings would silently fail to set
env values for keys which did not exist outside the context manager
block. It now works as expected. Thanks to Will Maier for the catch and
suggested solution.

		[Support] #393 [https://github.com/fabric/fabric/issues/393]: Fixed a typo in an example code snippet in the task docs.
Thanks to Hugo Garza for the catch.

		[Bug] #396 [https://github.com/fabric/fabric/issues/396]: --shortlist broke after the addition of
--list-format and no longer displayed the short list format
correctly. This has been fixed.

		[Bug] #373 [https://github.com/fabric/fabric/issues/373]: Re-added missing functionality preventing host exclusion from working correctly.

		[Bug] #303 [https://github.com/fabric/fabric/issues/303]: Updated terminal size detection to correctly skip over non-tty
stdout, such as when running fab taskname | other_command.

		2011-08-21: released Fabric 1.2.1 [https://github.com/fabric/fabric/tree/1.2.1]

		2011-08-21: released Fabric 1.1.3 [https://github.com/fabric/fabric/tree/1.1.3]

		2011-08-21: released Fabric 1.0.3 [https://github.com/fabric/fabric/tree/1.0.3]

		[Bug] #417 [https://github.com/fabric/fabric/issues/417]: abort_on_prompts would incorrectly abort when set to True,
even if both password and host were defined. This has been fixed. Thanks to
Valerie Ishida for the report.

		[Support] #416 [https://github.com/fabric/fabric/issues/416]: Updated documentation to reflect move from Redmine to Github.

		[Bug] #389 [https://github.com/fabric/fabric/issues/389]: Fixed/improved error handling when Paramiko import fails. Thanks
to Brian Luft for the catch.

		2011-07-12: released Fabric 1.2.0 [https://github.com/fabric/fabric/tree/1.2.0]

		[Feature] #22 [https://github.com/fabric/fabric/issues/22]: Enhanced @task to add aliasing, per-module default tasks, and
control over the wrapping task class.
Thanks to Travis Swicegood for the initial work and collaboration.

		[Bug] #380 [https://github.com/fabric/fabric/issues/380]: Improved unicode support when testing objects for being
string-like. Thanks to Jiri Barton for catch & patch.

		[Support] #382 [https://github.com/fabric/fabric/issues/382]: Experimental overhaul of changelog formatting & process to
make supporting multiple lines of development less of a hassle.

		2011-07-07: released Fabric 1.1.2 [https://github.com/fabric/fabric/tree/1.1.2] (see below for details)

		2011-06-24: released Fabric 1.0.2 [https://github.com/fabric/fabric/tree/1.0.2] (see below for details)

Prehistory

The content below this section comes from older versions of Fabric which wrote
out changelogs to individual, undated files. They have been concatenated and
preserved here for historical reasons, and may not be in strict chronological
order.

Changes in version 1.1.2 (2011-07-07)

Bugfixes

		#375 [https://github.com/fabric/fabric/issues/375]: The logic used to separate tasks from modules when running
fab --list incorrectly considered task classes implementing the mapping
interface to be modules, not individual tasks. This has been corrected.
Thanks to Vladimir Mihailenco for the catch.

Changes in version 1.1.1 (2011-06-29)

Bugfixes

		The public API for Task mentioned use of the run()
method, but Fabric’s main execution loop had not been updated to look for and
call it, forcing users who subclassed Task to define
__call__() instead. This was an oversight and has been corrected.

See also

Task subclasses

Changes in version 1.1 (2011-06-24)

This page lists all changes made to Fabric in its 1.1.0 release.

Note

This release also includes all applicable changes from the 1.0.2 release.

Highlights

		#76 [https://github.com/fabric/fabric/issues/76]: New-style tasks have been added. With
the addition of the task decorator and the
Task class, you can now “opt-in” and explicitly mark task
functions as tasks, and Fabric will ignore the rest. The original behavior
(now referred to as “classic” tasks) will still take
effect if no new-style tasks are found. Major thanks to Travis Swicegood for
the original implementation.

		#56 [https://github.com/fabric/fabric/issues/56]: Namespacing is now possible: Fabric will crawl imported module
objects looking for new-style task objects and build a dotted hierarchy
(tasks named e.g. web.deploy or db.migrations.run), allowing for
greater organization. See Namespaces for details. Thanks again to
Travis Swicegood.

Feature additions

		#10 [https://github.com/fabric/fabric/issues/10]: upload_project now allows control over the
local and remote directory paths, and has improved error handling. Thanks to
Rodrigue Alcazar for the patch.

		As part of #56 [https://github.com/fabric/fabric/issues/56] (highlighted above), added --list-format to allow specification of a nested output format from --list.

		#107 [https://github.com/fabric/fabric/issues/107]: require‘s provided_by kwarg now
accepts iterables in addition to single values. Thanks to Thomas Ballinger
for the patch.

		#117 [https://github.com/fabric/fabric/issues/117]: upload_template now supports the
put flags mirror_local_mode and mode. Thanks to
Joe Stump for the suggestion and Thomas Ballinger for the patch.

		#154 [https://github.com/fabric/fabric/issues/154]: sed now allows customized regex flags
to be specified via a new flags parameter. Thanks to Nick Trew for the
suggestion and Morgan Goose for initial implementation.

		#170 [https://github.com/fabric/fabric/issues/170]: Allow exclusion of specific hosts from
the final run list. Thanks to Casey Banner for the suggestion and patch.

		#189 [https://github.com/fabric/fabric/issues/189]: Added --abort-on-prompts/env.abort_on_prompts to allow a more non-interactive behavior,
aborting/exiting instead of trying to prompt the running user. Thanks to
Jeremy Avnet and Matt Chisholm for the initial patch.

		#273 [https://github.com/fabric/fabric/issues/273]: upload_template now offers control over
whether it attempts to create backups of pre-existing destination files.
Thanks to Ales Zoulek for the suggestion and initial patch.

		#283 [https://github.com/fabric/fabric/issues/283]: Added the with_settings decorator to allow
application of env var settings to an entire function, as an alternative to
using the settings context manager. Thanks to
Travis Swicegood for the patch.

		#353 [https://github.com/fabric/fabric/issues/353]: Added --keepalive/env.keepalive to
allow specification of an SSH keepalive parameter for troublesome network
connections. Thanks to Mark Merritt for catch & patch.

Bugfixes

		#115 [https://github.com/fabric/fabric/issues/115]: An implementation detail causing host lists to lose order
when deduped by the fab execution loop, has been patched to preserve
order instead. So e.g. fab -H a,b,c (or setting env.hosts = ['a', 'b',
'c']) will now always run on a, then b, then c. Previously,
there was a chance the order could get mixed up during deduplication. Thanks
to Rohit Aggarwal for the report.

		#345 [https://github.com/fabric/fabric/issues/345]: contains returned the stdout of its
internal grep command instead of success/failure, causing incorrect
behavior when stderr exists and is combined with stdout. This has been
corrected. Thanks to Szymon Reichmann for catch and patch.

Documentation updates

		Documentation for task declaration has been moved from
Execution model into its own docs page, Defining tasks, as a
result of the changes added in #76 [https://github.com/fabric/fabric/issues/76] and #56 [https://github.com/fabric/fabric/issues/56].

		#184 [https://github.com/fabric/fabric/issues/184]: Make the usage of rsync_project‘s
local_dir argument more obvious, regarding its use in the rsync call.
(Specifically, so users know they can pass in multiple, space-joined
directory names instead of just one single directory.)

Internals

		#307 [https://github.com/fabric/fabric/issues/307]: A whole pile of minor PEP8 tweaks. Thanks to Markus Gattol for
highlighting the pep8 tool and to Rick Harding for the patch.

		#314 [https://github.com/fabric/fabric/issues/314]: Test utility decorator improvements. Thanks to Rick Harding for
initial catch & patch.

Changes in version 1.0.2 (2011-06-24)

Note

This release also includes all applicable changes from the 0.9.7 release.

Bugfixes

		#258 [https://github.com/fabric/fabric/issues/258]: Bugfix to a previous, incorrectly applied fix regarding
local on Windows platforms.

		#324 [https://github.com/fabric/fabric/issues/324]: Update run/sudo‘s
combine_stderr kwarg so that it correctly overrides the global setting in
all cases. This required changing its default value to None, but the
default behavior (behaving as if the setting were True) has not changed.
Thanks to Matthew Woodcraft and Connor Smith for the catch.

		#337 [https://github.com/fabric/fabric/issues/337]: Fix logic bug in put preventing use of
mirror_local_mode. Thanks to Roman Imankulov for catch & patch.

		#352 [https://github.com/fabric/fabric/issues/352] (also #320 [https://github.com/fabric/fabric/issues/320]): Seemingly random issues with output lockup
and input problems (e.g. sudo prompts incorrectly rejecting passwords) appear
to have been caused by an I/O race condition. This has been fixed. Thanks to
Max Arnold and Paul Oswald for the detailed reports and to Max for the
diagnosis and patch.

Documentation

		Updated the API documentation for cd to explicitly
point users to lcd for modifying local paths.

		Clarified the behavior of rsync_project re: how
trailing slashes in local_dir affect remote_dir. Thanks to Mark
Merritt for the catch.

Changes in version 1.0.1 (2011-03-27)

Note

This release also includes all applicable changes from the 0.9.5 release.

Bugfixes

		#301 [https://github.com/fabric/fabric/issues/301]: Fixed a bug in local‘s behavior when
capture=False and output.stdout (or .stderr) was also False.
Thanks to Chris Rose for the catch.

		#310 [https://github.com/fabric/fabric/issues/310]: Update edge case in put where using the
mode kwarg alongside use_sudo=True runs a hidden
sudo command. The mode kwarg needs to be octal but
was being interpolated in the sudo call as a string/integer. Thanks to
Adam Ernst for the catch and suggested fix.

		#311 [https://github.com/fabric/fabric/issues/311]: append was supposed to have its
partial kwarg’s default flipped from True to False. However, only
the documentation was altered. This has been fixed. Thanks to Adam Ernst for
bringing it to our attention.

		#312 [https://github.com/fabric/fabric/issues/312]: Tweak internal I/O related loops to prevent high CPU usage and
poor screen-printing behavior on some systems. Thanks to Kirill Pinchuk for
the initial patch.

		#320 [https://github.com/fabric/fabric/issues/320]: Some users reported problems with dropped input, particularly
while entering sudo passwords. This was fixed via the
same change as for #312 [https://github.com/fabric/fabric/issues/312].

Documentation

		Added a missing entry for env.path in the usage
documentation.

Changes in version 1.0 (2011-03-04)

This page lists all changes made to Fabric in its 1.0.0 release.

Highlights

		#7 [https://github.com/fabric/fabric/issues/7]: run/sudo now allow full
interactivity with the remote end. You can interact with remote prompts and
similar interfaces, making certain tasks much easier, and freeing you from
the need to find noninteractive solutions if you don’t want to. See
Interaction with remote programs for more on these changes.

		put and get received many updates,
including but not limited to: recursion, globbing, inline sudo
capability, and increased control over local file paths. See the individual
ticket line-items below for details. Erich Heine (sophacles on IRC)
played a large part in implementing and/or collecting these changes and
deserves much of the credit.

		Added functionality for loading fabfiles which are Python packages
(directories) instead of just modules (single files). This allows for easier
organization of nontrivial fabfiles and paves the way for task namespacing
in the near future. See Fabfile discovery for details.

		#185 [https://github.com/fabric/fabric/issues/185]: Mostly of interest to those contributing to Fabric itself,
Fabric now leverages Paramiko to provide a stub SSH and SFTP server for use
during runs of our test suite. This makes quick, configurable full-stack
testing of Fabric (and, to an extent, user fabfiles) possible.

Backwards-incompatible changes

The below changes are backwards incompatible and have the potential to
break your 0.9.x based fabfiles!

		contains and append
previously had the filename argument in the second position, whereas all
other functions in the contrib.files module had
filename as the first argument. These two functions have been brought in
line with the rest of the module.

		sed now escapes single-quotes and parentheses in
addition to forward slashes, in its before and after kwargs. Related
to, but not entirely contained within, #159 [https://github.com/fabric/fabric/issues/159].

		The user and pty kwargs in sudo‘s signature have
had their order swapped around to more closely match
run.

		As part of the changes made in #7 [https://github.com/fabric/fabric/issues/7], run and
sudo have had the default value of their pty kwargs
changed from False to True. This, plus the addition of the
combine_stderr kwarg/env var, may result in significant behavioral
changes in remote programs which operate differently when attached to a tty.

		#61 [https://github.com/fabric/fabric/issues/61]: put and get now honor
the remote current-working-directory changes applied by
cd. Previously they would always treat relative
remote paths as being relative to the remote home directory.

		#79 [https://github.com/fabric/fabric/issues/79]: get now allows increased control over local
filenames when downloading single or multiple files. This is backwards
incompatible because the default path/filename for downloaded files has
changed. Thanks to Juha Mustonen, Erich Heine and Max Arnold for
brainstorming solutions.

		#88 [https://github.com/fabric/fabric/issues/88]: local has changed the default value of its
capture kwarg, from True to False. This was changed in order to
be more intuitive, at the cost of no longer defaulting to the same rich
return value as in run/sudo (which
is still available by specifying capture=True.)

		#121 [https://github.com/fabric/fabric/issues/121]: put will no longer automatically attempt
to mirror local file modes. Instead, you’ll need to specify
mirror_local_mode=True to get this behavior. Thanks to Paul Smith for a
patch covering part of this change.

		#172 [https://github.com/fabric/fabric/issues/172]: append has changed the default value of
its partial kwarg from True to False in order to be safer/more
intuitive.

		#221 [https://github.com/fabric/fabric/issues/221]: runs_once now memoizes the wrapped task’s
return value and returns that value on subsequent invocations, instead of
returning None. Thanks to Jacob Kaplan-Moss and Travis Swicegood for catch +
patch.

Feature additions

		Prerelease versions of Fabric (starting with the 1.0 prereleases) will now
print the Git SHA1 hash of the current checkout, if the user is working off
of a Git clone of the Fabric source code repository.

		Added path context manager for modifying commands’
effective $PATH.

		Added convenience .succeeded attribute to the return values of
run/sudo/local
which is simply the opposite of the .failed attribute. (This addition has
also been backported to Fabric’s 0.9 series.)

		Refactored SSH disconnection code out of the main fab loop into
disconnect_all, allowing library users to avoid problems
with non-fabfile Python scripts hanging after execution finishes.

		#2 [https://github.com/fabric/fabric/issues/2]: Added use_sudo kwarg to put to allow
uploading of files to privileged locations. Thanks to Erich Heine and IRC
user npmap for suggestions and patches.

		#23 [https://github.com/fabric/fabric/issues/23]: Added prefix context manager for
easier management of persistent state across commands.

		#27 [https://github.com/fabric/fabric/issues/27]: Added environment variable (always_use_pty) and
command-line flag (--no-pty) for global control over the
run/sudo pty argument.

		#28 [https://github.com/fabric/fabric/issues/28]: Allow shell-style globbing in get. Thanks
to Erich Heine and Max Arnold.

		#55 [https://github.com/fabric/fabric/issues/55]: run, sudo and
local now provide access to their standard error
(stderr) as an attribute on the return value, alongside e.g. .failed.

		#148 [https://github.com/fabric/fabric/issues/148]: local now returns the same “rich” string
object as run/sudo do, so that it
is a string containing the command’s stdout (if capture=True) or the
empty string (if capture=False) which exposes the .failed and
.return_code attributes, and so forth.

		#151 [https://github.com/fabric/fabric/issues/151]: Added a puts utility function, which allows
greater control over fabfile-generated (as opposed to Fabric-generated)
output. Also added fastprint, an alias to
puts allowing for convenient unbuffered,
non-newline-terminated printing.

		#192 [https://github.com/fabric/fabric/issues/192]: Added per-user/host password cache to assist in
multi-connection scenarios.

		#193 [https://github.com/fabric/fabric/issues/193]: When requesting a remote pseudo-terminal, use the invoking
terminal’s dimensions instead of going with the default.

		#217 [https://github.com/fabric/fabric/issues/217]: get/put now accept
file-like objects as well as local file paths for their local_path
arguments.

		#245 [https://github.com/fabric/fabric/issues/245]: Added the lcd context manager for
controlling local‘s current working directory and
put/get‘s local working
directories.

		#274 [https://github.com/fabric/fabric/issues/274]: put/get now have
return values which may be iterated over to access the paths of files
uploaded remotely or downloaded locally, respectively. These return values
also allow access to .failed and .succeeded attributes, just like
run and friends. (In this case, .failed is actually
a list itself containing any paths which failed to transfer, which naturally
acts as a boolean as well.)

Documentation updates

		API, tutorial and usage docs updated with the above new features.

		README now makes the Python 2.5+ requirement up front and explicit; some
folks were still assuming it would run on Python 2.4.

		Added a link to Python’s documentation for string interpolation in
upload_template‘s docstring.

Changes in version 0.9.7 (2011-06-23)

The following changes were implemented in Fabric 0.9.7:

Bugfixes

		#329 [https://github.com/fabric/fabric/issues/329]: reboot would have problems reconnecting post-reboot (resulting in a traceback) if env.host_string was not fully-formed (did not contain user and port specifiers.) This has been fixed.

Changes in version 0.9.6 (2011-04-29)

The following changes were implemented in Fabric 0.9.6:

Bugfixes

		#347 [https://github.com/fabric/fabric/issues/347]: append incorrectly tested for str
instead of types.StringTypes, causing it to split up Unicode strings as
if they were one character per line. This has been fixed.

Changes in version 0.9.5 (2011-03-21)

The following changes were implemented in Fabric 0.9.5:

Bugfixes

		#37 [https://github.com/fabric/fabric/issues/37]: Internal refactoring of a Paramiko call from _transport to
get_transport().

		#258 [https://github.com/fabric/fabric/issues/258]: Modify subprocess call on Windows platforms to avoid
space/quote problems in local. Thanks to Henrik
Heimbuerger and Raymond Cote for catch + suggested fixes.

		#261 [https://github.com/fabric/fabric/issues/261]: Fix bug in comment which truncated
regexen ending with $. Thanks to Antti Kaihola for the catch.

		#264 [https://github.com/fabric/fabric/issues/264]: Fix edge case in reboot by gracefully
clearing connection cache. Thanks to Jason Gerry for the report &
troubleshooting.

		#268 [https://github.com/fabric/fabric/issues/268]: Allow for @ symbols in usernames, which is valid on some
systems. Fabric’s host-string parser now splits username and hostname at the
last @ found instead of the first. Thanks to Thadeus Burgess for the
report.

		#287 [https://github.com/fabric/fabric/issues/287]: Fix bug in password prompt causing occasional tracebacks.
Thanks to Antti Kaihola for the catch and Rick Harding for testing the
proposed solution.

		#288 [https://github.com/fabric/fabric/issues/288]: Use temporary files to work around the lack of a -i flag in
OpenBSD and NetBSD sed. Thanks to Morgan Lefieux for
catch + patches.

		#305 [https://github.com/fabric/fabric/issues/305]: Strip whitespace from hostnames to help prevent user error.
Thanks to Michael Bravo for the report and Rick Harding for the patch.

		#316 [https://github.com/fabric/fabric/issues/316]: Use of settings with key names not
previously set in env no longer raises KeyErrors. Whoops. Thanks to Adam
Ernst for the catch.

Documentation updates

		#228 [https://github.com/fabric/fabric/issues/228]: Added description of the PyCrypto + pip + Python 2.5 problem to
the documentation and removed the Python 2.5 check from setup.py.

		#291 [https://github.com/fabric/fabric/issues/291]: Updated the PyPM-related install docs re: recent changes in
PyPM and its download URLs. Thanks to Sridhar Ratnakumar for the patch.

Changes in version 0.9.4 (2011-02-18)

The following changes were implemented in Fabric 0.9.4:

Feature additions

		Added documentation for using Fabric as a library.

		Mentioned our Twitter account [https://twitter.com/pyfabric] on the main
docs page.

		#290 [https://github.com/fabric/fabric/issues/290]: Added escape kwarg to append to
allow control over previously automatic single-quote escaping.

Changes in version 0.9.3 (2010-11-12)

The following changes were implemented in Fabric 0.9.3:

Feature additions

		#255 [https://github.com/fabric/fabric/issues/255]: Added stderr and succeeded attributes to
local.

		#254 [https://github.com/fabric/fabric/issues/254]: Backported the .stderr and .succeeded attributes on
run/sudo return values, from the
Git master/pre-1.0 branch. Please see those functions’ API docs for details.

Bugfixes

		#228 [https://github.com/fabric/fabric/issues/228]: We discovered that the pip + PyCrypto installation problem was
limited to Python 2.5 only, and have updated our setup.py accordingly.

		#230 [https://github.com/fabric/fabric/issues/230]: Arbitrary or remainder commands (fab <opts> -- <run command
here>) will no longer blow up when invoked with no fabfile present. Thanks
to IRC user orkaa for the report.

		#242 [https://github.com/fabric/fabric/issues/242]: Empty string values in task CLI args now parse correctly.
Thanks to Aaron Levy for the catch + patch.

Documentation updates

		#239 [https://github.com/fabric/fabric/issues/239]: Fixed typo in execution usage docs. Thanks to Pradeep Gowda and
Turicas for the catch.

Changes in version 0.9.2 (2010-09-06)

The following changes were implemented in Fabric 0.9.2:

Feature additions

		The reboot operation has been added, providing a way for
Fabric to issue a reboot command and then reconnect after the system has
restarted.

		python setup.py test now runs Fabric’s test suite (provided you have all
the prerequisites from the requirements.txt installed). Thanks to Eric
Holscher for the patch.

		Added functionality for loading fabfiles which are Python packages
(directories) instead of just modules (single files.) See
Fabfile discovery.

		Added output lines informing the user of which tasks are being executed (e.g.
[myserver] Executing task 'foo'.)

		Added support for lazy (callable) role definition values in env.roledefs.

		Added contrib.django module with basic Django
integration.

		env.local_user was added, providing easy and permanent
access to the local system username, even if an alternate remote username has
been specified.

		#29 [https://github.com/fabric/fabric/issues/29]: Added support for arbitrary command-line-driven anonymous tasks
via fab [options] -- [shell command]. See Arbitrary remote shell commands.

		#52 [https://github.com/fabric/fabric/issues/52]: Full tracebacks during aborts are now displayed if the user has
opted to see debug-level output.

		#101 [https://github.com/fabric/fabric/issues/101]: Added colors module with basic color output support.
(#101 [https://github.com/fabric/fabric/issues/101] is still open: we plan to leverage the new module in Fabric’s
own output in the future.)

		#137 [https://github.com/fabric/fabric/issues/137]: Commas used to separate per-task arguments may now be escaped
with a backslash. Thanks to Erich Heine for the patch.

		#144 [https://github.com/fabric/fabric/issues/144]: hosts (and roles)
will now expand a single, iterable argument instead of requiring one to use
e.g. @hosts(*iterable).

		#151 [https://github.com/fabric/fabric/issues/151]: Added a puts utility function, which allows
greater control over fabfile-generated (as opposed to Fabric-generated)
output. Also added fastprint, an alias to
puts allowing for convenient unbuffered,
non-newline-terminated printing.

		#208 [https://github.com/fabric/fabric/issues/208]: Users rolling their own shell completion or who otherwise find
themselves performing text manipulation on the output of --list may now use --shortlist to get a plain, newline-separated
list of task names.

Bugfixes

		The interactive “what host to connect to?” prompt now correctly updates the
appropriate environment variables (hostname, username, port) based on user
input.

		Fixed a bug where Fabric’s own internal fabfile would pre-empt the user’s
fabfile due to a PYTHONPATH order issue. User fabfiles are now always loaded
at the front of the PYTHONPATH during import.

		Disabled some DeprecationWarnings thrown by Paramiko when that library is
imported into Fabric under Python 2.6.

		#44 [https://github.com/fabric/fabric/issues/44], #63 [https://github.com/fabric/fabric/issues/63]: Modified rsync_project to
honor the SSH port and identity file settings. Thanks to Mitch Matuson
and Morgan Goose.

		#123 [https://github.com/fabric/fabric/issues/123]: Removed Cygwin from the “are we on Windows” test; now, only
Python installs whose sys.platform says 'win32' will use Windows-only
code paths (e.g. importing of pywin32).

Documentation updates

		Added a few new items to the FAQ.

		#173 [https://github.com/fabric/fabric/issues/173]: Simple but rather embarrassing typo fix in README. Thanks to
Ted Nyman for the catch.

		#194 [https://github.com/fabric/fabric/issues/194]: Added a note to the install docs about a
possible edge case some Windows 64-bit Python users may encounter.

		#216 [https://github.com/fabric/fabric/issues/216]: Overhauled the process backgrounding FAQ
to include additional techniques and be more holistic.

Packaging updates

		#86 [https://github.com/fabric/fabric/issues/86], #158 [https://github.com/fabric/fabric/issues/158]: Removed the bundled Paramiko 1.7.4 and updated the
setup.py to require Paramiko >=1.7.6. This lets us skip the known-buggy
Paramiko 1.7.5 while getting some much needed bugfixes in Paramiko 1.7.6.

Changes in version 0.9.1 (2010-05-28)

The following changes were implemented in Fabric 0.9.1:

Feature additions

		#82 [https://github.com/fabric/fabric/issues/82]: append now offers a partial kwarg
allowing control over whether the “don’t append if given text already exists”
test looks for exact matches or not. Thanks to Jonas Nockert for the catch
and discussion.

		#112 [https://github.com/fabric/fabric/issues/112]: fab --list now prints out the fabfile’s module-level
docstring as a header, if there is one.

		#141 [https://github.com/fabric/fabric/issues/141]: Added some more CLI args/env vars to allow user configuration
of the Paramiko connect call – specifically no_agent and
no_keys.

Bugfixes

		#75 [https://github.com/fabric/fabric/issues/75]: fab, when called with no arguments or (useful) options, now
prints help, even when no fabfile can be found. Previously, calling fab
in a location with no fabfile would complain about the lack of fabfile
instead of displaying help.

		#130 [https://github.com/fabric/fabric/issues/130]: Context managers now correctly clean up env if they
encounter an exception. Thanks to Carl Meyer for catch + patch.

		#132 [https://github.com/fabric/fabric/issues/132]: local now calls strip on its stdout,
matching the behavior of run/sudo.
Thanks to Carl Meyer again on this one.

		#166 [https://github.com/fabric/fabric/issues/166]: cd now correctly overwrites
env.cwd when given an absolute path, instead of naively appending its
argument to env.cwd‘s previous value.

Documentation updates

		A number of small to medium documentation tweaks were made which had no
specific Redmine ticket. The largest of these is the addition of the
FAQ to the Sphinx documentation instead of storing it as a
source-only text file. (Said FAQ was also slightly expanded with new FAQs.)

		#17 [https://github.com/fabric/fabric/issues/17]: Added note to FAQ re: use of dtach as
alternative to screen. Thanks to Erich Heine for the tip.

		#64 [https://github.com/fabric/fabric/issues/64]: Updated installation docs to clarify where
package maintainers should be downloading tarballs from. Thanks to James
Pearson for providing the necessary perspective.

		#95 [https://github.com/fabric/fabric/issues/95]: Added a link to a given version’s changelog on the PyPI page
(technically, to the setup.py long_description field).

		#110 [https://github.com/fabric/fabric/issues/110]: Alphabetized the CLI argument command reference. Thanks to Erich Heine.

		#120 [https://github.com/fabric/fabric/issues/120]: Tweaked documentation, help strings to make it more obvious
that fabfiles are simply Python modules.

		#127 [https://github.com/fabric/fabric/issues/127]: Added note to install docs re: ActiveState’s
PyPM. Thanks to Sridhar Ratnakumar for the tip.

Changes in version 0.9 (2009-11-08)

This document details the various backwards-incompatible changes made during
Fabric’s rewrite between versions 0.1 and 0.9. The codebase has been almost
completely rewritten and reorganized and an attempt has been made to remove
“magical” behavior and make things more simple and Pythonic; the fab
command-line component has also been redone to behave more like a typical Unix
program.

Major changes

You’ll want to at least skim the entire document, but the primary changes that
will need to be made to one’s fabfiles are as follows:

Imports

You will need to explicitly import any and all methods or decorators used,
at the top of your fabfile; they are no longer magically available. Here’s a
sample fabfile that worked with 0.1 and earlier:

@hosts('a', 'b')
def my_task():
 run('ls /var/www')
 sudo('mkdir /var/www/newsite')

The above fabfile uses hosts, run and sudo, and so in Fabric 0.9 one
simply needs to import those objects from the new API module fabric.api:

from fabric.api import hosts, run, sudo

@hosts('a', 'b')
def my_task():
 run('ls /var/www')
 sudo('mkdir /var/www/newsite')

You may, if you wish, use from fabric.api import *, though this is
technically not Python best practices; or you may import directly from the
Fabric submodules (e.g. from fabric.decorators import hosts.)
See Fabfile construction and use for more information.

Python version

Fabric started out Python 2.5-only, but became largely 2.4 compatible at one
point during its lifetime. Fabric is once again only compatible with Python
2.5 or newer, in order to take advantage of the various new features and
functions available in that version.

With this change we’re setting an official policy to support the two most
recent stable releases of the Python 2.x line, which at time of writing is 2.5
and 2.6. We feel this is a decent compromise between new features and the
reality of operating system packaging concerns. Given that most users use
Fabric from their workstations, which are typically more up-to-date than
servers, we’re hoping this doesn’t cut out too many folks.

Finally, note that while we will not officially support a 2.4-compatible
version or fork, we may provide a link to such a project if one arises.

Environment/config variables

The config object previously used to access and set internal state
(including Fabric config options) has been renamed to env, but
otherwise remains mostly the same (it allows both dictionary and
object-attribute style access to its data.) env resides in the
state submodule and is importable via fabric.api, so where before
one might have seen fabfiles like this:

def my_task():
 config.foo = 'bar'

one will now be explicitly importing the object like so:

from fabric.api import env

def my_task():
 env.foo = 'bar'

Execution mode

Fabric’s default mode of use, in prior versions, was what we called “broad
mode”: your tasks, as Python code, ran only once, and any calls to functions
that made connections (such as run or sudo) would run once per host in the
current host list. We also offered “deep mode”, in which your entire task
function would run once per host.

In Fabric 0.9, this dichotomy has been removed, and “deep mode” is the
method Fabric uses to perform all operations. This allows you to treat your
Fabfiles much more like regular Python code, including the use of if
statements and so forth, and allows operations like run to unambiguously
return the output from the server.

Other modes of execution such as the old “broad mode” may return as Fabric’s
internals are refactored and expanded, but for now we’ve simplified things, and
deep mode made the most sense as the primary mode of use.

“Lazy” string interpolation

Because of how Fabric used to run in “broad mode” (see previous section) a
special string formatting technique – the use of a bash-like dollar sign
notation, e.g. "hostname: $(fab_host)" – had to be used to allow the
current state of execution to be represented in one’s operations. This is no
longer necessary and has been removed. Because your tasks are executed once
per host, you may build strings normally (e.g. with the % operator) and
refer to env.host_string, env.user and so forth.

For example, Fabric 0.1 had to insert the current username like so:

print("Your current username is $(fab_user)")

Fabric 0.9 and up simply reference env variables as normal:

print("Your current username is %s" % env.user)

As with the execution modes, a special string interpolation function or method
that automatically makes use of env values may find its way back into
Fabric at some point if a need becomes apparent.

Other backwards-incompatible changes

In no particular order:

		The Fabric config file location used to be ~/.fabric; in the interests
of honoring Unix filename conventions, it’s now ~/.fabricrc.

		The old config object (now env) had a getAny method which
took one or more key strings as arguments, and returned the value attached
to the first valid key. This method still exists but has been renamed to
first.

		Environment variables such as fab_host have been renamed to simply e.g.
host. This looks cleaner and feels more natural, and requires less
typing. Users will naturally need to be careful not to override these
variables, but the same holds true for e.g. Python’s builtin methods and
types already, so we felt it was worth the tradeoff.

		Fabric’s version header is no longer printed every time the program runs;
you should now use the standard --version/-V command-line options to
print version and exit.

		The old about command has been removed; other Unix programs don’t
typically offer this. Users can always view the license and warranty info in
their respective text files distributed with the software.

		The old help command is now the typical Unix options -h/--help.

		Furthermore, there is no longer a listing of Fabric’s programming API
available through the command line – those topics impact fabfile
authors, not fab users (even though the former is a subset of the
latter) and should stay in the documentation only.

		prompt‘s primary function is now to return a value to the caller, although
it may still optionally store the entered value in env as well.

		prompt now considers the empty string to be valid input; this allows other
functions to wrap prompt and handle “empty” input on their own terms.

		In addition to the above changes, prompt has been updated to behave more
obviously, as its previous behavior was confusing in a few ways:

		It will now overwrite pre-existing values in the environment dict, but
will print a warning to the user if it does so.

		Additionally, (and this appeared to be undocumented) the default
argument could take a callable as well as a string, and would simply set
the default message to the return value if a callable was given. This
seemed to add unnecessary complexity (given that users may call e.g.
prompt(blah, msg, default=my_callable()) so it has been removed.

		When connecting, Fabric used to use the undocumented fab_pkey env
variable as a method of passing in a Paramiko PKey object to the SSH
client’s connect method. This has been removed in favor of an
ssh-like -i option, which allows one to specify a private key file
to use; that should generally be enough for most users.

		download is now get in order to match up with put (the name mismatch
was due to get being the old method of getting env vars.)

		The noshell argument to sudo (added late in its life to previous
Fabric versions) has been renamed to shell (defaults to True, so the
effective behavior remains the same) and has also been extended to the run
operation.

		Additionally, the global sudo_noshell option has been renamed to
use_shell and also applies to both run and sudo.

		local_per_host has been removed, as it only applied to the now-removed
“broad mode”.

		load has been removed; Fabric is now “just Python”, so use Python’s
import mechanisms in order to stitch multiple fabfiles together.

		abort is no longer an “operation” per se and has been moved to
fabric.utils. It is otherwise the same as before, taking a single
string message, printing it to the user and then calling sys.exit(1).

		rsyncproject and upload_project have been moved into
fabric.contrib (specifically, fabric.contrib.project), which
is intended to be a new tree of submodules for housing “extra” code which
may build on top of the core Fabric operations.

		invoke has been turned on its head, and is now the runs_once decorator
(living in fabric.decorators). When used to decorate a function, that
function will only execute one time during the lifetime of a fab run.
Thus, where you might have used invoke multiple times to ensure a given
command only runs once, you may now use runs_once to decorate the function
and then call it multiple times in a normal fashion.

		It looks like the regex behavior of the validate argument to prompt
was never actually implemented. It now works as advertised.

		Couldn’t think of a good reason for require to be a decorator and a
function, and the function is more versatile in terms of where it may be
used, so the decorator has been removed.

		As things currently stand with the execution model, the depends
decorator doesn’t make a lot of sense: instead, it’s safest/best to simply
make “meta” commands that just call whatever chain of “real” commands you
need performed for a given overarching task.

For example, instead of having command A say
that it “depends on” command B, create a command C which calls A and B in the
right order, e.g.:

def build():
 local('make clean all')

def upload():
 put('app.tgz', '/tmp/app.tgz')
 run('tar xzf /tmp/app.tgz')

def symlink():
 run('ln -s /srv/media/photos /var/www/app/photos')

def deploy():
 build()
 upload()
 symlink()

Note

The execution model is still subject to change as Fabric evolves. Please
don’t hesitate to email the list or the developers if you have a use case
that needs something Fabric doesn’t provide right now!

		Removed the old fab shell functionality, since the move to “just Python”
should make vanilla python/ipython usage of Fabric much easier.

		We may add it back in later as a convenient shortcut to what basically
amounts to running ipython and performing a handful of from
fabric.foo import bar calls.

		The undocumented fab_quiet option has been replaced by a much more granular
set of output controls. For more info, see Managing output.

Changes from alpha 1 to alpha 2

The below list was generated by running git shortlog 0.9a1..0.9a2 and then
manually sifting through and editing the resulting commit messages. This will
probably occur for the rest of the alphas and betas; we hope to use
Sphinx-specific methods of documenting changes once the final release is out
the door.

		Various minor tweaks to the (still in-progress) documentation, including one
thanks to Curt Micol.

		Added a number of TODO items based on user feedback (thanks!)

		Host information now available in granular form (user, host, port) in the
env dict, alongside the full user@host:port host string.

		Parsing of host strings is now more lenient when examining the username
(e.g. hyphens.)

		User/host info no longer cleared out between commands.

		Tweaked setup.py to use find_packages. Thanks to Pat McNerthney.

		Added ‘capture’ argument to local to allow local
interactive tasks.

		Reversed default value of local‘s show_stderr
kwarg; local stderr now prints by default instead of being hidden by
default.

		Various internal fabfile tweaks.

Changes from alpha 2 to alpha 3

		Lots of updates to the documentation and TODO

		Added contrib.files with a handful of file-centric subroutines

		Added contrib.console for console UI stuff (so far, just confirm)

		Reworked config file mechanisms a bit, added CLI flag for setting it.

		Output controls (including CLI args, documentation) have been added

		Test coverage tweaked and grown a small amount (thanks in part to Peter
Ellis)

		Roles overhauled/fixed (more like hosts now)

		Changed --list linewrap behavior to truncate instead.

		Make private key passphrase prompting more obvious to users.

		Add pty option to sudo. Thanks to José Muanis for the tip-off re: get_pty()

		Add CLI argument for setting the shell used in commands (thanks to Steve Steiner)

		Only load host keys when env.reject_unknown_keys is True. Thanks to Pat
McNerthney.

		And many, many additional bugfixes and behavioral tweaks too small to merit
cluttering up this list! Thanks as always to everyone who contributed
bugfixes, feedback and/or patches.

Changes from alpha 3 to beta 1

This is closer to being a straight dump of the Git changelog than the previous
sections; apologies for the overall change in tense.

		Add autodocs for fabric.contrib.console.

		Minor cleanup to package init and setup.py.

		Handle exceptions with strerror attributes that are None instead of strings.

		contrib.files.append may now take a list of strings if desired.

		Straighten out how prompt() deals with trailing whitespace

		Add ‘cd’ context manager.

		Update upload_template to correctly handle backing up target directories.

		upload_template() can now use Jinja2 if it’s installed and user asks for it.

		Handle case where remote host SSH key doesn’t match known_hosts.

		Fix race condition in run/sudo.

		Start fledgling FAQ; extended pty option to run(); related doc tweaks.

		Bring local() in line with run()/sudo() in terms of .failed attribute.

		Add dollar-sign backslash escaping to run/sudo.

		Add FAQ question re: backgrounding processes.

		Extend some of put()’s niceties to get(), plus docstring/comment updates

		Add debug output of chosen fabfile for troubleshooting fabfile discovery.

		Fix Python path bug which sometimes caused Fabric’s internal fabfile to
pre-empt user’s fabfile during load phase.

		Gracefully handle “display” for tasks with no docstring.

		Fix edge case that comes up during some auth/prompt situations.

		Handle carriage returns in output_thread correctly. Thanks to Brian Rosner.

Changes from beta 1 to release candidate 1

As with the previous changelog, this is also mostly a dump of the Git log. We
promise that future changelogs will be more verbose :)

		Near-total overhaul and expansion of documentation (this is the big one!)
Other mentions of documentation in this list are items deserving their own
mention, e.g. FAQ updates.

		Add FAQ question re: passphrase/password prompt

		Vendorized Paramiko: it is now included in our distribution and is no longer
an external dependency, at least until upstream fixes a nasty 1.7.5 bug.

		Fix #34: switch upload_template to use mkstemp (also removes Python 2.5.2+
dependency – now works on 2.5.0 and up)

		Fix #62 by escaping backticks.

		Replace “ls” with “test” in exists()

		Fixes #50. Thanks to Alex Koshelev for the patch.

		local‘s return value now exhibits .return_code.

		Abort on bad role names instead of blowing up.

		Turn off DeprecationWarning when importing paramiko.

		Attempted fix re #32 (dropped output)

		Update role/host initialization logic (was missing some edge cases)

		Add note to install docs re: PyCrypto on win32.

		Add FAQ item re: changing env.shell.

		Rest of TODO migrated to tickets.

		fab test (when in source tree) now uses doctests.

		Add note to compatibility page re: fab_quiet.

		Update local() to honor context_managers.cd()

Changes from release candidate 1 to final release

		Fixed the sed docstring to accurately reflect which
sed options it uses.

		Various changes to internal fabfile, version mechanisms, and other
non-user-facing things.

 © Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Fabric 1.4.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Christian Vest Hansen and Jeffrey E. Forcier.
 Created using Sphinx 1.2.

_static/minus.png

_static/comment-bright.png

_static/comment-close.png

